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Abstract. This paper presents PFLP, a library for probabilistic pro-
gramming in the functional logic programming language Curry. It de-
monstrates how the concepts of a functional logic programming language
support the implementation of a library for probabilistic programming.
In fact, the paradigms of functional logic and probabilistic programming
are closely connected. That is, we can apply techniques from one area to
the other and vice versa. We will see that an implementation based on the
concepts of functional logic programming can have benefits with respect
to performance compared to a standard list-based implementation.

1 Introduction

The probabilistic programming paradigm allows the succinct definition of prob-
abilistic processes and other applications based on probability distributions, for
example, Bayesian inference as used in machine learning. The idea of probabilis-
tic programming has been quite successful. There are a variety of probabilistic
programming languages supporting all kinds of programming paradigms. For
example, the programming languages Church [12] and Anglican [21] are based
on the functional programming language Scheme, ProbLog [9] is an extension of
the logic programming language Prolog, and Probabilistic C [17] is based on the
imperative language C. Besides full-blown languages there are also embedded do-
main specific languages that implement probabilistic programming as a library.
For example, FACTORIE [16] is a library for the hybrid programming language
Scala and Erwig and Kollmansberger [10] present a library for the functional
programming language Haskell. We recommend the survey by Gordon et al. [13]
about the current state of probabilistic programming for further information.

This paper presents PFLP, a library providing a domain specific language
for probabilistic programming in the functional logic programming language
Curry [2]. PFLP makes heavy use of functional logic programming concepts
and shows that this paradigm is well-suited for implementing a library for prob-
abilistic programming. In fact, there is a close connection between probabilistic
programming and functional logic programming. For example, non-deterministic
choice and probabilistic choice are similar concepts. Furthermore, the concept
of call-time choice as known from functional logic programming coincides with
(stochastic) memoization [8] in the area of probabilistic programming. We are
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not the first to observe this close connection between functional logic program-
ming and probabilistic programming. For example, Fischer et al. [11] present a
library for modeling functional logic programs in the functional language Haskell.
As they state, by extending their approach to weighted non-determinism we can
model a probabilistic programming language.

Besides a lightweight implementation of a library for probabilistic program-
ming in a functional logic programming language, this paper makes the following
contributions.

– We investigate the interplay of probabilistic programming with the features
of a functional logic programming language. For example, we show how call-
time choice and non-determinism interplay with probabilistic choice.

– We discuss how we utilize functional logic features to improve the implemen-
tation of probabilistic combinators.

– On one hand, we will see that an implementation of probability distributions
using non-determinism in combination with non-strict probabilistic combi-
nators can be more efficient than an implementation using lists.

– On the other hand, we illustrate that the combination of non-determinism
and non-strictness with respect to distributions has to be handled with care.
More precisely, it is important to enforce a certain degree of strictness in
order to guarantee correct results.

– Finally, this paper is supposed to foster the exchange between the community
of probabilistic programming and of functional logic programming. That is,
while the connection exists for a long time, there has not been much exchange
between the communities. We would like to take this paper as a starting
point to bring these paradigms closer together. Thus, this paper introduces
the concepts of both, the functional logic and probabilistic programming,
paradigms.

Last but not least, we also want to state a non-contribution. We do not
plan to compete against full-blown probabilistic languages or mature libraries
for probabilistic programming. Nevertheless, we think that this library is a great
showcase for languages with built-in non-determinism, because the functional
logic approach can be superior to the functional approach using lists.

2 The Basics

In this section we discuss the core of the PFLP library3. The implementation
is based on a Haskell library for probabilistic programming presented by Erwig
and Kollmansberger [10]. We will not present the whole PFLP library, but only
core functions. The paper at hand is a literate Curry file. We use the Curry
compiler KiCS24 by Braßel et al. [5] for all code examples.

3 We provide the code for the library at https://github.com/finnteegen/pflp.
4 We use version 0.6.0 of KiCS2 and the source is found at https://www-ps.

informatik.uni-kiel.de/kics2/.

https://github.com/finnteegen/pflp
https://www-ps.informatik.uni-kiel.de/kics2/
https://www-ps.informatik.uni-kiel.de/kics2/
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2.1 Modeling Distributions

One key ingredient of probabilistic programming is the definition of distributions.
A distribution consists of pairs of elementary events and their probability. We
model probabilities as Float and distributions as a combination of an elementary
event and the corresponding probability.

type Probability = Float
data Dist a = Dist a Probability

In a functional language like Haskell, the canonical way to define distributions
uses lists. Here, we use Curry’s built-in non-determinism as an alternative for
lists to model distributions with more than one event-probability pair. As an
example, we define a fair coin, where True represents heads and False represents
tails, as follows.5

coin :: Dist Bool

coin = Dist True 1
2 ? Dist False 1

2

In Curry the (?)-operator non-deterministically chooses between two given
arguments. Non-determinism is not reflected in the type system, that is, a non-
deterministic choice has type a → a → a. Such non-deterministic computations
introduced by (?) describe two individual computation branches; one for the left
argument und one for the right argument of (?). Printing an expression in the
REPL6 evaluates the non-deterministic computations, thus, yields one result for
each branch as shown in the following examples.

λ> coin
Dist True 0.5
Dist False 0.5

λ> 1 ? 2
1
2

It is cumbersome to define distributions explicitly as in the case of coin.
Hence, we define helper functions for constructing distributions. Given a list
of events and probabilities, enum creates a distribution by folding these pairs
non-deterministically with a helper function member .7

member :: [a ]→ a
member = foldr (?) failed

enum :: [a ]→ [Probability ]→ Dist a
enum vs ps = member (zipWith Dist vs ps)

In Curry the constant failed is a silent failure that behaves as neutral element
with respect to (?). That is, the expression True ? failed has the same semantics

5 Here and in the following we write probabilities as fractions for readability.
6 We visualize the interactions with the REPL using λ> as prompt.
7 We shorten the implementation of enum for presentation purposes; actually, enum

only allows valid distributions, e.g., that the given probabilities add up to 1.0.
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as True. Hence, the function member takes a list and yields a non-deterministic
choice of all elements of the list.

As a short-cut, we define a function that yields a uniform distribution given
a list of events as well as a function certainly , which yields a distribution with a
single event of probability one.

uniform :: [a ]→ Dist a

uniform xs = let len = length xs in enum xs (repeat 1
len )

certainly :: a → Dist a
certainly x = Dist x 1.0

The function repeat yields a list that contains the given value infinitely often.
Because of Curry’s laziness, it is sufficient if one of the arguments of enum is a
finite list because zipWith stops when one of its arguments is empty.

We can refactor the definition of coin using uniform as follows.

coin :: Dist Bool
coin = uniform [True,False ]

In general, the library hides the constructor Dist , that is, the user has to define
distributions by using the combinators provided by the library.

The library provides additional functions to combine and manipulate dis-
tributions. In order to work with dependent distributions, the operator (>>>=)
applies a function that yields a distribution to each event of a given distribution
and multiplies the corresponding probabilities.8

(>>>=) :: Dist a → (a → Dist b)→ Dist b
d >>>= f = let Dist x p = d

Dist y q = f x
in Dist y (p ∗. q)

The implementation via let-bindings seems a bit tedious, however, it is im-
portant that we define (>>>=) as it is. The canonical implementation performs
pattern matching on the first argument but uses a let-binding for the result of
f . That is, it is strict in the first argument but non-strict in the application of f ,
the second argument. We discuss the implementation in more detail later. For
now, it is sufficient to note that (>>>=) yields a partial Dist-constructor without
evaluating any of its arguments. In contrast, a definition using pattern matching
or a case expression needs to evaluate its argument first, thus, is more strict.

Intuitively, we have to apply the function f to each event of the distribu-
tion d and combine the resulting distributions into a single distribution. In a
Haskell implementation, we would use a list comprehension to define this func-
tion. In the Curry implementation, we model distributions as non-deterministic
computations, thus, the above rule describes the behavior of the function for

8 Due to the lack of overloading in Curry, operations on Float have a (floating) point
suffix, e.g. (∗.), whereas operations on Int use the common operation names.
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an arbitrary pair of the first distribution and an arbitrary pair of the second
distribution, that is, the result of f .

For independent distributions we provide the function joinWith that com-
bines two distributions with respect to a given function. We implement joinWith
by means of (>>>=).

joinWith :: (a → b → c)→ Dist a → Dist b → Dist c
joinWith f d1 d2 = d1 >>>= λx → d2 >>>= λy → certainly (f x y)

In a monadic setting this function is sometimes called liftM2 . Here, we use the
same nomenclature as Erwig and Kollmansberger [10].

As an example of combining multiple distinct distributions, we define a func-
tion that flips a coin n times.

flipCoin :: Int → Dist [Bool ]
flipCoin n | n ≡ 0 = certainly [ ]

| otherwise = joinWith (:) coin (flipCoin (n − 1))

When we run the example of flipping two coins in the REPL of KiCS2, we get
four events.

λ> flipCoin 2
Dist [True,True ] 0.25
Dist [True,False ] 0.25
Dist [False,True ] 0.25
Dist [False,False ] 0.25

In the example above, coin is a non-deterministic operation, namely, coin =
Dist True 1

2 ? Dist False 1
2 . Applying joinWith to coin and coin combines all

possible results of two coin tosses.

2.2 Querying Distributions

With a handful of building blocks to define distributions available, we now want
to calculate total probabilities, thus, perform queries on our distributions. We
provide an operator (??) :: (a → Bool) → Dist a → Probability to extract the
probability of a distribution with respect to a given predicate. The operator
filters events that satisfy the given predicate and computes the total probability
of the remaining elementary events. It is straightforward to implement this kind
of filter function on distributions in Curry.

filterDist :: (a → Bool)→ Dist a → Dist a
filterDist p d@(Dist x ) | p x = d

The implementation of filterDist is a partial identity on the event-probability
pairs. Every event that satisfies the predicate is part of the resulting distribution.
The function fails for event-predicate pairs that do not satisfy the predicate. The
definition is equivalent to the following version using an if -then-else-expression.
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filterDist ′ p d@(Dist x ) = if p x then d else failed

Computing the total probability, i.e., summing up all remaining probabili-
ties, is a more advanced task in the functional logic approach. Remember that
we represent a distribution by chaining all event-probability pairs with (?), thus,
constructing non-deterministic computations. These non-deterministic compu-
tations introduce individual branches of computations that cannot interact with
each other. In order to compute the total probability of a distribution, we have
to merge these distinct branches. Such a merge is possible by the encapsulation
of non-deterministic computations. Similar to the findall construct of the logic
language Prolog, in Curry we encapsulate a non-deterministic computation by
using a primitive called allValues9. The function allValues operates on a poly-
morphic — and potentially non-deterministic — value and yields a multi-set of
all non-deterministic values.

allValues :: a → {a}

In order to work with encapsulated values, Curry provides the following two
functions to fold and map the resulting multi-set.

foldValues :: (a → a → a)→ a → {a} → a
mapValues :: (a → b)→ {a} → {b}

We do not discuss the implementation details behind allValues here. It is suf-
ficient to know that, as a library developer, we can employ this powerful function
to encapsulate non-deterministic values and use these values in further compu-
tations. However, due to intransparent behavior in combination with sharing as
discussed by Braßel et al. [4], a user of the library should not use allValues at
all. In a nutshell, inner-most and outer-most evaluation strategies may cause
different results when combining sharing and encapsulation.

With this encapsulation mechanism at hand, we can define the extraction
operator (??) as follows.

prob :: Dist a → Probability
prob (Dist p) = p

(??) :: (a → Bool)→ Dist a → Probability
(??) p = foldValues (+.) 0.0 ◦ allValues ◦ prob ◦ filterDist p

First we filter the elementary events by some predicate and project to the prob-
abilities only. Afterwards we encapsulate the remaining probabilities and sum
them up. As an example for the use of (??), we may flip four coins and calculate
the probability of at least two heads — that is, True.

λ> ((> 2) ◦ length ◦ filter id) ?? flipCoin 4
0.6875

9 We use an abstract view of the result of an encapsulation to emphasize that the
order of encapsulated results does not matter. In practice, we can, for example, use
the function allValues :: a → [a ] defined in the library Findall .
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3 The Details

Up to now, we have discussed a simple library for probabilistic programming
that uses non-determinism to represent distributions. In this chapter we will
see that we can highly benefit from Curry-like non-determinism with respect to
performance when we compare PFLP’s implementation with a list-based imple-
mentation. More precisely, when we query a distribution with a predicate that
does not evaluate its argument completely, we can possibly prune large parts
of the search space. Before we discuss the details of the combination of non-
strictness and non-determinism, we discuss aspects of sharing non-deterministic
choices. At last, we discuss details about the implementation of (>>>=) and why
PFLP does not allow non-deterministic events within distributions.

3.1 Call-time Choice vs. Run-time Choice

By default Curry uses call-time choice, that is, variables denote single determin-
istic choices. When we bind a variable to a non-deterministic computation, one
value is chosen and all occurrences of the variable denote the same determinis-
tic choice. Often call-time choice is what you are looking for. For example, the
definition of filterDist makes use of call-time choice.

filterDist :: (a → Bool)→ Dist a → Dist a
filterDist p d@(Dist x ) | p x = d

The variable d on the right-hand side denotes a single deterministic choice,
namely, the one that satisfies the predicate and not the non-deterministic com-
putation that was initially passed to filterDist .

Almost as often run-time choice is what you are looking for and call-time
choice gets in your way; probabilistic programming is no exception. For example,
let us reconsider flipping a coin n times. We parametrize the function flipCoin
over the given distribution and define the following generalized function.

replicateDist :: Int → Dist a → Dist [a ]
replicateDist n d | n ≡ 0 = certainly [ ]

| otherwise = joinWith (:) d (replicateDist (n − 1) d)

When we use this function to flip a coin twice, the result is not what we intended.

λ> replicateDist 2 coin
Dist [True,True ] 0.25
Dist [False,False ] 0.25

Because replicateDist shares the variable d , we only perform a choice once and
replicate deterministic choices. In contrast, top-level nullary functions like coin
are evaluated every time, thus, exhibit run-time choice, which is the reason why
the previously shown flipCoin behaves properly.
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In order to implement replicateDist correctly, we have to enforce run-time
choice. We introduce the following type synonym and function to model and
work with values with run-time choice behavior.

type RT a = ()→ a

pick :: RT a → a
pick rt = rt ()

We can now use the type RT to hide the non-determinism on the right-hand
side of a function arrow. This way, pick explicitly triggers the evaluation of rt ,
performing a new choice for every element of the result list.

replicateDist :: Int → RT (Dist a)→ Dist [a ]
replicateDist n rt | n ≡ 0 = certainly [ ]

| otherwise = joinWith (:) (pick rt) (replicateDist (n − 1) rt)

In order to use replicateDist with coin, we have to construct a value of type
RT (Dist Bool). However, we cannot provide a function to construct a value of
type RT that behaves as intended. Such a function would share a deterministic
choice and non-deterministically yield two functions, instead of one function that
yields a non-deterministic computation. The only way to construct a value of
type RT is to explicitly use a lambda abstraction.

λ> replicateDist 2 (λ()→ coin)
Dist [True,True ] 0.25
Dist [True,False ] 0.25
Dist [False,True ] 0.25
Dist [False,False ] 0.25

Instead of relying on call-time choice as default behavior, we could model
Dist as a function and make run-time choice the default in PFLP. In this case,
to get call-time choice we would have to use a special construct provided by
the library — as it is the case in many probabilistic programming libraries, e.g.,
mem in Church. We have decided to go with the current modeling based on call-
time-choice, because the alternative would work against the spirit of the Curry
programming language.

There is a long history of discussions about the pros and cons of call-time
choice and run-time choice. It is common knowledge in probabilistic program-
ming [8] that, in order to model stochastic automata or probabilistic grammars,
memoization — that is, call-time choice — has to be avoided. Similarly, Antoy
[1] observes that you need run-time choice to elegantly model regular expressions
in the context of functional logic programming languages. Then again, proba-
bilistic languages need a concept like memoization in order to use a single value
drawn from a distribution multiple times. If we flip a coin and have more than
one dependency on its result in the remaining program, the result of that flip is
not supposed to change between one occurrence and the other.
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3.2 Combination of Non-strictness and Non-determinism

This section illustrates the benefits from the combination of non-strictness and
non-determinism with respect to performance. More precisely, in a setting that
uses Curry-like non-determinism, non-strictness can prevent non-determinism
from being “spawned”. Let us consider calculating the probability for throwing
only sixes when throwing n dice. First we define a uniform die as follows.

data Side = One | Two | Three | Four | Five | Six

die :: Dist Side
die = uniform [One,Two,Three,Four ,Five,Six ]

We define the following query by means of the combinators introduced so far.
The function all simply checks that all elements of a list satisfy a given predicate;
it is defined by means of the boolean conjunction (∧).

allSix :: Int → Probability
allSix n = all (≡ Six ) ?? replicateDist n (λ()→ die)

The following table compares running times10 of this query for different num-
bers of dice. The row labeled “Curry ND” lists the running times for an imple-
mentation that uses the operator (>>>=). The row “Curry List” shows the num-
bers for a list-based implementation in Curry, which is a literal translation of
the library by Erwig and Kollmansberger. The row labeled “Curry ND!” uses an
operator (>>>=!) instead, which we will discuss shortly. Finally, we compare our
implementation to the original list-based implementation, which the row labeled
“Haskell List” refers to. The table states the running times in milliseconds of a
compiled executable for each benchmark as a mean of three runs. Cells marked
with “–” take more than a minute.

# of dice 5 6 7 8 9 10 100 200 300

Curry ND <1 <1 <1 <1 <1 <1 48 231 547
Curry List 2 13 72 419 2554 15 394 – – –
Curry ND! 52 409 2568 16 382 – – – – –
Haskell List 1 5 30 210 1415 6538 – – –

Obviously, the example above is a little contrived. While the query is expo-
nential in both list versions, it is linear in the non-deterministic setting11. In
order to illustrate the behavior of the example above, we consider the following
application for an arbitrary distribution dist of type Dist [Side ].

filterDist (all (≡ Six )) (joinWith (:) (Dist One 1
6 ) dist)

10 All benchmarks were executed on a Linux machine with an Intel Core i7-6500U (2.50
GHz) and 8 GiB RAM running Fedora 25. We used the Glasgow Haskell Compiler
(version 8.0.2, option -O2) and set the search strategy in KiCS2 to depth-first.

11 Non-determinism causes significant overhead for KiCS2, thus, “Curry ND” does not
show linear development, but we measured a linear running time using PAKCS [14].
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This application yields an empty distribution without evaluating the distri-
bution dist . The clou here is that joinWith yields a Dist constructor without
inspecting its arguments. When we demand the event of the resulting Dist ,
joinWith has to evaluate only its first argument to see that the predicate all (≡
Six ) yields False. The evaluation of the expression fails without inspecting the
second argument of joinWith. Figure 1 illustrates the evaluation in more detail.

In case of the example allSix , all non-deterministic branches that contain a
value different from Six fail fast due to the non-strictness. Thus, the number
of evaluation steps is linear in the number of rolled dice. Note that a similar
behavior is not possible in a list-based implementation that implements (>>>=)
with concatMap. In such an implementation, we have to traverse the entire
distribution before we can evaluate the predicate all (≡ Six ). The consequence
is that the running times of “Haskell List” cannot compete with “Curry ND”
when the number of dice increases.

We can only benefit from the combination of non-strictness and non-deter-
minism if we define (>>>=) with care. Let us take a look at a strict variant of
(>>>=) and discuss its consequences.

(>>>=!) :: Dist a → (a → Dist b)→ Dist b
Dist x p >>>=! f = case f x of Dist y q → Dist y (p ∗. q)

This implementation is strict in its first argument as well as in the result of the
function application. When we use (>>>=!) to implement the allSix example, we
lose the benefit of Curry-like non-determinism. The row labeled “Curry ND!”
shows the running times when using (>>>=!) instead of (>>>=). As (>>>=!) is strict,
the function joinWith has to evaluate both its arguments to yield a result.

Intuitively, we expect similar running times for “Curry ND!” and “Curry
List”. However, this is not the case. “Curry ND!” heavily relies on non-deter-
ministic computations, which causes significant overhead for KiCS2. We do not
investigate these differences here but propose it as a direction for future research.

Obviously, turning an exponential problem into a linear one is like getting
only sixes when throwing dice. In most cases we are not that lucky. For example,
consider the following query for throwing n dice that are either five or six.

allFiveOrSix :: Int → Probability
allFiveOrSix n = all (λs → s ≡ Five ∨ s ≡ Six ) ?? replicateDist n (λ()→ die)

We again list running times for different numbers of dice for this query.

# of dice 5 6 7 8 9 10

Curry ND 4 7 15 34 76 163
Curry List 2 13 84 489 2869 16 989
Curry ND! 49 382 2483 15 562 – –
Haskell List 2 5 31 219 1423 6670

As we can see from the running times, this query is exponential in all imple-
mentations. Nevertheless, the running time of the non-strict, non-deterministic
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filterDist (all (≡ Six )) (joinWith (:) (Dist One 1
6
) dist)

≡ { Def. of joinWith }
filterDist (all (≡ Six ))

(Dist One 1
6
>>>= λx → dist >>>= λxs → certainly (x : xs))

≡ { Def. of (>>>=) (twice) }
filterDist (all (≡ Six ))

(let Dist x p = Dist One 1
6
; Dist xs q = dist ; Dist ys r = certainly (x : xs)

in Dist ys (p ∗. (q ∗. r))
≡ { Def. of filterDist }
let Dist x p = Dist One 1

6
; Dist xs q = dist ; Dist ys r = certainly (x : xs)

in if all (≡ Six ) ys then Dist ys (p ∗. (q ∗. r)) else failed
≡ { Def. of certainly }
let Dist x p = Dist One 1

6
; Dist xs q = dist

in if all (≡ Six ) (x : xs) then Dist (x : xs) (p ∗. (q ∗. 1.0)) else failed
≡ { Def. of all }
let Dist x p = Dist One 1

6
; Dist xs q = dist

in if x ≡ Six ∧ all (≡ Six ) xs then Dist (x : xs) (p ∗. (q ∗. 1.0)) else failed
≡ { Def. of (≡) and (∧) }
let Dist x p = Dist One 1

6
; Dist xs q = d

in if False then Dist (x : xs) (p ∗. (q ∗. 1.0)) else failed
≡ { Def. of if − then− else }

failed

Fig. 1. Simplified evaluation illustrating non-strict non-determinism

implementation is much better because we only have to consider two sides — six
and five — while we have to consider all sides in the list implementations and
the non-deterministic, strict implementation. That is, while the basis of the com-
plexity is two in the case of the non-deterministic, non-strict implementation, it
is six in all the other cases. Again, we get an overhead of a factor around 25 in
the case of the strict non-determinism compared to the list implementation.

3.3 Definition of the Bind Operator

In this section we discuss our design choices concerning the implementation of
the bind operator. We illustrate that we have to be careful about non-strictness,
because we do not want to lose non-deterministic results. Most importantly, the
final implementation ensures that users cannot misuse the library if they stick
to one simple rule.

First, we revisit the definition of (>>>=) introduced in Section 2.

(>>>=) :: Dist a → (a → Dist b)→ Dist b
d >>>= f = let Dist x p = d

Dist y q = f x
in Dist y (p ∗. q)
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We can observe two facts about this definition. First, the definition yields a
Dist-constructor without matching any argument. Second, if neither the event
nor the probability of the final distribution is evaluated, the application of the
function f is not evaluated as well.

We can observe these properties with some exemplary usages of (>>>=). As a
reference, we see that pattern matching the Dist-constructor of a coin triggers
the non-determinism and yields two results.

λ> (λ(Dist )→ True) coin
True
True

In contrast, distributions resulting from an application of (>>>=) behave differ-
ently. This time, pattern matching on the Dist-constructor does not trigger any
non-determinism.

λ> (λ(Dist )→ True) (certainly ()>>>= λ → coin)
True

λ> (λ(Dist )→ True) (coin >>>= certainly)
True

We observe that the last two examples yield a single result, because the (>>>=)-
operator changes the position of the non-determinism. That is, the non-deter-
minism does not reside at the same level as the Dist-constructor, but in the
arguments of Dist . Therefore, we have to be sure to trigger all non-determinism
when we compute probabilities. Not evaluating non-determinism might lead to
false results when we sum up probabilities. Hence, non-strictness is a crucial
property for positive pruning effects, but has to be used carefully.

Consider the following example usage of (>>>=), which is simply an inlined
version of joinWith applied to the boolean conjunction (∧).

λ> (λ(Dist x )→ x ) (coin >>>= λx → coin >>>= λy → certainly (x ∧ y))
False
True
False

We lose one expected result from the distribution, because (∧) is non-strict in
its second argument in case the first argument is False. When the first coin
evaluates to False, (>>>=) ignores the second coin and yields False straightaway.
In this case, the non-determinism of the second coin is not triggered and we get
only three instead of four results. The non-strictness of (∧) has no consequences
when using (>>>=!), because the operator evaluates both arguments and, thus,
triggers the non-determinism.

As we have seen above, when using the non-strict operator (∧), one of the
results gets lost. However, when we sum up probabilities, we do not want events
to get lost. For example, when we compute the total probability of a distribution,
the result should always be 1.0. However, the query above has only three results
and every event has a probability of 0.25, resulting in a total probability of 0.75.
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Here is the good news. While events can get lost when passing non-strict func-
tions to (>>>=), probabilities never get lost. For example, consider the following
application.

λ> (λ(Dist p)→ p) (coin >>>= λx → coin >>>= λy → certainly (x ∧ y))
0.25
0.25
0.25
0.25

Since multiplication is strict, if we demand the resulting probability, the
operator (>>>=) has to evaluate the Dist-constructor and its probability. That is,
no values get lost if we evaluate the resulting probability. Fortunately, the query
operation (??) calculates the total probability of the filtered distributions, thus,
evaluates the probability as the following example shows.

λ> not ?? (coin >>>= λx → coin >>>= λy → certainly (x ∧ y))
0.75

We calculate the probability of the event False and while there where only two
False events, the total probability is still 0.75, i.e., three times 0.25.

All in all, in order to benefit from non-strictness, all operations have to use
the right amount of strictness, not too much and not too little. For this reason
PFLP does not provide the Dist-constructor nor the corresponding projection
functions to the user. With this restriction, the library guarantees that no rele-
vant probabilities get lost.

3.4 Non-deterministic Events

We assume that all events passed to library functions are deterministic, thus, do
not support non-deterministic events within distributions. In order to illustrate
why, we consider an example that breaks this rule here.

Curry provides free variables, that is, expressions that non-deterministically
evaluate to every possible value of its type. When we revisit the definition of a
die, we might be tempted to use a free variable instead of explicitly enumerating
all values of type Side. For example, consider the following definition of a die.

die2 :: Dist Side

die2 = Dist unknown 1
6

We just use a free variable — the constant unknown — and calculate the prob-
ability of each event ourselves. The free variable non-deterministically yields all
constructors of type Side. Now, let us consider the following query.

λ> const True ?? die2
0.16666667
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The result of this query is 1
6 and not 1.0 as expected. This example illustrates

that probabilities can get lost if we do not use the right amount of strictness.
The definition of (??) first projects to the probability of die2 and throws away
all non-determinism. Therefore, we lose probabilities we would like to sum up.

As a consequence for PFLP, non-deterministic events within a distribution
are not allowed. If users of the library stick to this rule, it is not possible to
misuse the operations and lose non-deterministic results due to non-strictness.

4 Related and Future Work

The approach of this paper is based on the work by Erwig and Kollmansberger
[10], who introduce a Haskell library that represents distributions as lists of
event-probability pairs. Their library also provides a simple sampling mecha-
nism to perform inference on distributions. Inference algorithms come into play
because common examples in probabilistic programming have an exponential
growth and it is not feasible to compute the whole distribution. Similarly, Ścibior
et al. [19] present a more efficient implementation using a DSL in Haskell. They
represent distributions as a free monad and inference algorithms as an inter-
pretation of the monadic structure. Thanks to this interpretation, the approach
is competitive to full-blown probabilistic programming languages with respect
to performance. PFLP provides functions to sample from distributions as well.
However, in this work we focus on modeling distributions and do not discuss
any sampling mechanism. In particular, as future work we plan to investigate
whether we can benefit from the improved performance as presented here in the
case of sampling. Furthermore, a more detailed investigation of the performance
of non-determinism in comparison to a list model is a topic for another paper.

The benefit with respect to the combination of non-strictness and non-de-
terminism is similar to the benefit of property-based testing using Curry-like
non-determinism in Haskell [18] and Curry [6]. In property-based testing, some-
times we want to generate test cases that satisfy a precondition. With Curry-like
non-determinism the precondition can prune the search space early, while a list-
based implementation has to generate all test cases and filter them afterwards.
Both applications, probabilistic programming and property-based testing, are
examples, where built-in non-determinism outperforms list-based approaches as
introduced by Wadler [20]. In comparison to property-based testing, here, we ob-
serve that we can even add a kind of monadic layer on top of the non-determinism
that computes additional information and still preserve the demand driven be-
havior. However, the additional information has to be evaluated strictly — as it
is the case for probabilities, otherwise we might lose non-deterministic results.

There are other more elaborated approaches to implement a library for prob-
abilistic programming. For example, Kiselyov and Shan [15] extend their library
for probabilistic programming in OCAML with a construct for lazy evaluation
to achieve similar positive effects. However, they use lazy evaluation for a con-
crete application based on importance sampling. Due to the combination of non-
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strictness and non-determinism, we can efficiently calculate the total probability
of the resulting distribution without utilizing sampling.

As future work, we see a high potential for performance improvements for
the Curry compiler KiCS2. PFLP serves as a starting point for further studies of
functional logic features in practical applications. For example, we would expect
the running times of the strict implementation based on non-determinism to
be approximately as efficient as a list-based implementation. However, as the
numbers in Section 3 show, the list approach is considerably faster.

The library’s design does not support the use of non-determinism in events
or probabilities of a distribution. In case of deeper non-determinism, we have
to be careful to trigger all non-determinism when querying a distribution as
shown in Section 3. Hence, the extension of the library with an interface using
non-determinism on the user’s side is an idea worth studying.

Last but not least, we see an opportunity to apply ideas and solutions of
the functional logic paradigm in probabilistic programming. For instance, Chris-
tiansen et al. [7] investigate free theorems for functional logic programs. As their
work considers non-determinism and sharing, adapting it to probabilistic pro-
gramming should be easy. As another example, Braßel [3] presents a debugger
for Curry that works well with non-determinism. Hence, it should be easy to
reuse these ideas in the setting of probabilistic programming as well.

5 Conclusion

We have implemented a simple library for probabilistic programming in a func-
tional logic programming language, namely Curry. Such a library proves to be a
good fit for a functional logic language, because both paradigms share similar fea-
tures. While other libraries need to reimplement features specific to probabilistic
programming, we solely rely on core features of functional logic languages.

The key idea of the library is to use non-determinism to model distribu-
tions. We discussed design choices as well as corresponding disadvantages and
advantages of this approach. In the end, the library uses non-strict probabilistic
combinators in order to avoid spawning unnecessary non-deterministic computa-
tions and, thus, benefit in terms of performance due to early pruning. However,
we have observed that the combination of non-strictness and non-deterministic
needs to be taken with a pinch of salt. Using combinators that are too strict
leads to a loss of the aforementioned performance benefit.
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