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Abstract

We present an approach for automatic function inversion
in Haskell. The inverse functions we generate are based on
an extension of Haskell’s computational model with non-
determinism and free variables. We implement this func-
tional logic extension of Haskell via a monadic lifting of
functions and type declarations. Using inverse functions,
we additionally show how Haskell’s pattern matching can
be augmented with support for functional patterns, which
enable arbitrarily deep pattern matching in data structures.
Finally, we provide a plugin for the Glasgow Haskell Com-
piler to seamlessly integrate inverses and functional patterns
into the language, covering almost all of the Haskell2010
language standard.
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1 Introduction

While functions compute some output for a given input, in-
verse functions should in turn compute the input for a given
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output. Invertible functions are an important concept: com-
mon applications include parser/printer [33, 46], compres-
sor/decompressor [53], and serializer/deserializer [28]Ðall of
which can be seen as pairs of functions with their inverses.

Function inversion [35] describes the task of generating
inverse functions automatically. While automatic inversion
does not necessarily always yield the most performant imple-
mentation, it is, for example, well suited to obtain reference
implementations for automatic testing. Automatic inversion
can also be used to synthesize parallel divide-and-conquer
algorithms [37].

In reality, however, there are many functions which have
no unique inverse. For instance, non-injective functions have
multiple inputs that lead to the same output and, thus, unique
inverses for such functions do not exist. In contrast, injective
functions are known to have unique inverses that are in
many cases efficient. For this reason, many other approaches
for automatic function inversion focus on injective functions
only [4, 16, 39]. However, this is often not practical in a
general-purpose language like Haskell, where non-injective
functions are quite common. As an example, consider the
function (++) that concatenates two input lists.

(++) :: [a] → [a] → [a]

[ ] ++ ys = ys

(x : xs) ++ ys = x : xs ++ ys

For any non-empty output list, there are at least two possible
combinations of input lists. For example, the expressions
[ ] ++ [1, 2], [1] ++ [2], and [1, 2] ++ [ ] all evaluate to [1, 2].
The problem of inverting non-injective functions can be

tackled by allowing inverse functions to return multiple
results, e.g., in a list structure. A possible type for the inverse
of (++) could be the following one.

(++)−1 :: [a] → [ ([a], [a]) ]

A call to this inverse function then might look as follows.

ghci> (++)−1 [1, 2]

[ ( [ ], [1, 2]), ( [1], [2]), ( [1, 2], [ ]) ]

Note that the type of inverse functions is not determined
by the arity of the original function’s equation(s), but by the
arity of the original function’s type. This way, it is possible
to decide if a use of an inverse is well-typed based only on

41

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-7905-3804
https://orcid.org/0000-0002-5795-6308
https://orcid.org/0000-0003-1288-2330
https://doi.org/10.1145/3471874.3472982
https://doi.org/10.1145/3471874.3472982


Haskell ’21, August 26ś27, 2021, Virtual, Republic of Korea Finn Teegen, Kai-Oliver Prott, and Niels Bunkenburg

the original function’s type, without reference to the original
function’s declaration.1

In logic programming languages, inverse computation is
often achieved without much effort. For instance, in Prolog
we can call predicates with free variables as arguments to
find variable bindings such that the predicate is satisfied.

prolog> append (Xs,Ys, [1, 2]).

Xs = [ ], Ys = [1, 2];

Xs = [1], Ys = [2];

Xs = [1, 2],Ys = [ ].

Our approach to implement function inversion in Haskell
is similar to Prolog in the sense that we want to interpret
functions with free variables as arguments. To that end, we
require a functional logic extension of Haskell.
A very interesting application for inverse functions we

identified in Haskell is that they also facilitate the imple-
mentation of advanced concepts like functional patterns [5],
which are known from functional logic programming [6].
Functional patterns enable pattern matching at arbitrarily
deep positions by allowing the use of function symbols in
patterns. Using a functional pattern, the function that re-
turns the last element of its input list can, for example, be
defined as follows.

last :: [a] → a

last ( ++ [x ]) = x

In this paper, we present a framework for automatic inver-
sion of Haskell functions. With the exception of primitive
operations that interfere with the łreal worldž, e.g., I/O oper-
ations, our automatic inversion covers the full Haskell2010
language specification [32]. In particular, we make the fol-
lowing contributions.

• We define a monad to model computations with free
variables (Section 3). In conjunction with a standard
monadic lifting (Section 2), this monad extends Haskell
with the required functional logic aspects.
• We describe the automatic generation of inverse func-
tions based on our extension of Haskell’s computa-
tional model (Section 4). The inverses make use of
Haskell’s laziness to reduce the search space, and are,
in consequence, more efficient than inverses in Prolog.
• We extend Haskell’s pattern matching capabilities by
adding functional patterns to the language, which we
implement using inverse functions (Section 5).
• We demonstrate that our framework can also be uti-
lized to express partial inverses, where known inputs
can be fixed [47] (Section 6).
• We discuss improvements of our approach to func-
tion inversion regarding higher-order functions and
numerical primitive types (Section 7).

1Adapted from The Typing Principle by Pickering et al. [44].

• Last, we provide a prototype2 of a Glasgow Haskell
Compiler (GHC) plugin that performs automatic in-
version as described in this paper. However, we do
not cover the implementation here. The prototype also
includes examples and a test suite to reinforce the
correctness of our approach.

2 Monadic Lifting

In this section, we discuss the monadic lifting that stands
at the core of our automatic inversion. Although Haskell
uses call-by-need evaluation, our transformation is based
on the call-by-name transformation as presented by Wadler
[58]. This transformation, however, is only sufficient when
modeling Haskell without side effects, because otherwise
sharing might become observable. We take care of this issue
when defining our monad for the lifting in Section 3 by
incorporating sharing (of the effect) into the monad itself.

We want to keep the original definitions in the module, so
that they remain usable. Therefore, we introduce our lifted
definitions under a new name. To distinguish between the
lifted and original definitions, the new name adds a subscript
to indicate to which monad a definition has been lifted to.

2.1 Lifting of Type Expressions

Our monadic lifting of types replaces type constructors with
their effectful counterparts. This includes the function type
constructor (→) as well, which is replaced by the following
type constructor.

newtype (→m) a b = Funcm (m a→ m b)

Using this type definition, the arguments of each function
type constructor are wrapped in our monadic type m. Hence,
both the argument and result of every lifted function are
monadic. While the constraints are lifted as well, any quanti-
fier still remains at the beginning of a type. For consistency,
we also wrap the outer type of a function. The lifting of type
expressions J·Ktm is presented in Figure 1. As an example, con-
sider the following type signature and its lifted counterpart,
where [ ]m is the lifted version of Haskell’s list type [ ].

map :: (a→ b) → [a] → [b]

mapm ::m ((a→m b) →m [a]m →m [b]m)

2.2 Lifting of Type Declarations

Because not only functions but also data constructors should
comply with call-by-name, we have to lift type declarations
as well. One might be tempted to apply the lifting of function
types to the constructor types. For example, in the case of

(:) :: a→ [a] → [a]

one would get the type

(:m) ::m (a→m [a]m →m [a]m).

2Available at https://github.com/cau-placc/inversion-plugin.
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J∀𝛼1 …𝛼n.𝜑 ⇒ 𝜏Ktm ≔ ∀𝛼1 …𝛼n.J𝜑Ktm ⇒ m J𝜏Kim (Polymorphic type)

J⟨T1 𝜏1, … , Tn 𝜏n⟩K
t
m ≔ ⟨JT1 𝜏1K

i
m, … , JTn 𝜏nK

i
m⟩ (Context)

J𝜏1 → 𝜏2K
i
m ≔ J𝜏1K

i
m →m J𝜏2K

i
m (Function type)

J𝜏1 𝜏2K
i
m ≔ J𝜏1K

i
m J𝜏2K

i
m (Type application)

JT Kim ≔ Tm (Type constructor)

J𝛼Kim ≔ 𝛼 (Type variable)

Figure 1. Lifting rules for type expressions parametrized over some monad m

However, the application of a constructor to a value is al-
ways defined and a constructor cannot introduce any ef-
fect to a program. Therefore, it is sufficient to just lift the
arguments of each constructor, because they are the only
potential sources of effects in a data type. This approach is
well-known from modeling the non-strictness of Haskell,
e.g., in a pure programming language like Agda [1]. The
rules for the lifting of type declarations J·Kdm are presented
in Figure 2. The following code shows how the list data type
[ ] is lifted.

data [ ] a = [ ]

| (:) a [a]

data [ ]m a = [ ]m

| (:m) (m a) (m [a]m)

2.3 Simplifying Pattern Matching

In order to define the monadic lifting for functions, it is use-
ful to simplify any pattern matching first because Haskell’s
pattern matching syntax is rich, even if we only consider
Haskell2010 [32]. For the bulk of our simplification we use
our own implementation of a standard pattern matching
algorithm [56] with the following extensions:

1. At the beginning, we move every pattern matching
into unary lambda abstractions on the right-hand side
of our definition. Thus, a function definition is replaced
by a constant that uses multiple unary lambda expres-
sions to introduce the arguments of the original func-
tion. This simplifies the subsequent monadic trans-
formation significantly. For example, the definition of
(++) from Section 1 is first transformed as follows.

(++) = 𝜆arg1→ 𝜆arg2→ case arg1 of

[ ] → arg2

x : xs→ x : xs ++ arg2

2. Every non-exhaustive pattern matching is augmented
by a catch-all pattern match failure. We use the error
function for the failure. Later on, the lifting replaces

the error call with a call to the monadic failm3 opera-
tion from the class MonadFail. This is important for
the correctness of our inverse functions when the orig-
inal function is only partially defined. Thus, a suitable
monad for our monadic lifting needs to be an instance
of MonadFail.

2.4 Lifting of Functions

After function definitions have been simplified such that
no argument occurs on the left-hand side, we continue by
lifting the expression on the right-hand side and renaming
the function accordingly. The lifted type of the function
serves as a guide for lifting the expression. We can derive
three rules for lifting expressions from our lifting of types:

1. As each function arrow (→) is replaced by the (→m)

type and wrapped in the monad m, all lambda expres-
sions have to be wrapped in a returnm ◦ Funcm.

2. We have to extract a value from the monad m using
the corresponding bind operator (>>=m) before we can
pattern match on it.

3. Before applying a function to an argument, we first
have to extract the function from themonadm by using
(>>=m) and pattern matching on the Funcm constructor.
As each function arrow is wrapped separately, this has
to be done for each parameter of the original function.

In the following paragraphs we explain how the lifting
works for a small subset of Haskell’s syntax. Figure 3 presents
the rules of our transformation J·Kem.

Variables. A variable that denotes a top-level function,
i.e., is globally scoped, has to be renamed so that it mentions
the lifted definition of the function. If the variable happens
to denote the error function, we instead replace it by failm

as mentioned earlier in Section 2.3.

Lambda Abstractions. A lambda abstraction is trans-
formed by wrapping it in returnm ◦ Funcm and applying the
lifting to the inner expression.

3We use superscripts for monadic operations to indicate which monad they
operate on. For instance, returnm refers to the return operation of some
monad m. This notation contrasts with the subscripts we use for lifted
operations.
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J data T 𝛼1 …𝛼n = D1 | … | DkK
d
m ≔ data Tm 𝛼1 …𝛼n = JD1K

c
m | … | JDkK

c
m (Data type)

J newtype T 𝛼1 …𝛼n = DKdm ≔ newtype Tm 𝛼1 …𝛼n = JDKcm (Newtype)

J type T 𝛼1 …𝛼n = 𝜏Kdm ≔ type Tm 𝛼1 …𝛼n = J𝜏Kim (Type synonym)

JC 𝜏1 …𝜏nK
c
m ≔ Cm J𝜏1K

t
m … J𝜏nK

t
m (Constructor)

Figure 2. Lifting rules for type declarations parametrized over some monad m

JvKem ≔




returnm ◦ Funcm ◦ (>>=
mfailm) if v denotes the function error

vm if v is globally scoped

v otherwise

(Variable)

J𝜆x → eKem ≔ (return
m ◦ Funcm) (𝜆x → JeKem) (Abstraction)

Je1 e2K
e
m ≔ Je1K

e
m ‘appm‘ Je2K

e
m (Application)

JCKem ≔ (return
m ◦ Funcm) (𝜆y1 → …→ (returnm ◦ Funcm) (𝜆yn →

returnm (Cm y1 … yn))) where C has arity n (Constructor)

J case e of {br1; … ; brn }K
e
m ≔ JeKem >>=

m 𝜆case {Jbr1K
b
m; … ; JbrnK

b
m } (Case expression)

JC x1 … xn → eKbm ≔ Cm x1 … xn → JeKem (Case branch)

Figure 3. Lifting rules for expressions parametrized over some monad m (y1 to yn are fresh variables)

Applications. We extract the łrealž function from the
monad before applying it in the lifted setting using the follow-
ing helper function, which we will use as a left-associative
infix operator.

infixl ‘appm‘

appm ::Monad m⇒ m (a→m b) → m a→ m b

mf ‘appm‘mx = mf >>=m 𝜆(Funcm f ) → f mx

An application of a function to more than one argument is
represented as multiple nested applications.

Constructors. While a function of type

𝜏1 → …→ 𝜏n → 𝜏 ′

is transformed into a function of type

m (J𝜏1K
i
m →m …→m J𝜏nK

i
m →m J𝜏 ′Kim),

a similar constructor type is transformed into

J𝜏1K
t
m → …→ J𝜏nK

t
m → J𝜏 ′Kim.

As applications of expressions in Haskell do not differentiate
between functions and constructors, we need to solve this
type discrepancy by transforming a value constructor occur-
ring in expressions into a nested chain of returnm ◦ Funcm
applications and lambda abstractions.

Case Expressions. Before performing a case analysis on
a term in the lifted setting, we need to extract the value from
the effect monad by means of (>>=m).

To conclude the lifting of functions with an example, we
revisit the function (++), whose simplified variant was al-
ready shown in Section 2.3. The following code illustrates
what the lifted version of that function looks like in the end.

(++m) ::Monad m⇒ m ( [a]m →m [a]m →m [a]m)

(++m) = (return
m ◦ Funcm) $ 𝜆arg1→

(returnm ◦ Funcm) $ 𝜆arg2→ arg1 >>=m 𝜆case

[ ]m → arg2

x :m xs→ ((returnm ◦ Funcm) $ 𝜆y1 →

(returnm ◦ Funcm) $ 𝜆y2 →

returnm (y1 :m y2))

‘appm‘ x ‘appm‘ ((++m) ‘app
m‘ xs ‘appm‘ arg2)

2.5 Lifting of Type Classes

Type (constructor) classes [26, 59] are renamed for their
lifting. Their methods and default implementations are lifted
just like regular functions. Instances are lifted similarly. For
example, the following code shows how a simplified Eq class
is lifted.

class Eq a where

(==) :: a→ a→ Bool

class Eqm a where

(==m) ::m (a→m a→m Boolm)
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3 Effect Monad

With the monadic lifting in mind, we can proceed with the
definition of the actual monad that we use for the lifting. Re-
call from Section 1 that we base our automatic inversion on
a functional logic extension of Haskell by non-determinism.
We will later see that the non-determinism originates solely
from the instantiation of free variables. Consequently, our
effect monad must be able to model non-deterministic com-
putations as well as free variables.

We do not define a single monad but two nested monads
instead. Using nested monads enables both implicit and ex-
plicit handling of free variables as needed. The inner monad
deals with the non-determinism effect, whereas the outer
monad models computations with the implicit instantiation
of free variables.

3.1 Non-Determinism Monad

While a monad that is an instance ofMonadPlus, e.g., the list
monad, usually suffices to model non-determinism [55], in
our case, we additionally require a state to account for the po-
tential sharing of the non-determinism effect [15]. The issue
of sharing non-determinism stems from Haskell’s call-by-
need evaluation. In the context of functional logic program-
ming, the combination of non-determinism and call-by-need
evaluation is known as call-time choice [21]. Because any
occurring non-determinism will originate solely from the
instantiation of free variables, it is sufficient to memorize
the value that a free variable has been instantiated with for
each computation branch. This fact also justifies the use of
the call-by-name transformation (see Section 2), because we
explicitly share the part that introduces effects, namely the
free variables, by means of our state.
To memorize the bindings of free variables, we use an

untyped4 heap that maps free variables to their instantiated
values. In order to identify free variables, we use the follow-
ing type synonym.

type ID = Integer

The heap is given by the following abstract data type.

type Heap

empty :: Heap

insert :: ID → a→ Heap→ Heap

find :: ID → Heap→ Maybe a

The function empty creates an empty heap, insert adds a
binding for an identifier to an existing heap, and find returns
the value for an identifier from the heap if a binding for that
identifier exists on the heap.

For the definition of our stateful non-determinism monad
we use the state monad transformer5 [27, 30]. We apply the

4For the sake of simplicity, we forego a type-safe solution based on the
Typeable class [43]. Doing so is unproblematic, because the heap is never
exposed to the user.
5Available at https://hackage.haskell.org/package/transformers.

transformer to a monad that is an instance of MonadPlus.
More precisely, we use an efficient implementation of a tree-
based monad, namely Search6, that allows for the application
of different search strategies. In addition to the heap, the
state contains an identifier that represents the next available
identifier. This identifier will become relevant for newly
generated free variables when instantiating free variables
(see Section 3.2). We end up with the following definition.

type ND a = StateT (Heap, ID) Search a

Finally, we provide a monad starter. It runs a stateful non-
deterministic computation with an initially empty heap and
0 as the first available identifier. The monad starter returns
the results of the non-deterministic computation in a list,
which is obtained using the function bfs that traverses the
Search structure breadth-first. We use breadth-first search
because of its completeness property.

evalND :: ND a→ [a]

evalND nd = bfs (evalStateT nd (empty , 0))

3.2 Functional Logic Monad

In order to define the monad for functional logic computa-
tions with free variables, we first need a concrete represen-
tation of free variables on the value level. To this end, we
introduce the following data type that distinguishes between
free variables and other values.

data FLVal a = Var ID

| Val {unVal :: a}

Functional logic computations with free variables are non-
deterministic computations that operate on the data type
FLVal, which is expressed by the following type that builds
on top of the non-determinism monad.

newtype FL a = FL {unFL :: ND (FLVal a) }

Nesting the non-determinism monad within the functional
logic monad allows us to easily work with the explicit repre-
sentation of free variables if needed. We exploit this aspect,
for example, in Section 4.2.
Next, we give the Monad instance7 for the FL type and

start by defining the returnFL operation.

returnFL :: a→ FL a

returnFL x = FL (returnND (Val x))

Alongside, we introduce a function freeFL that returns a free
variable in the functional logic monad.

freeFL :: ID → FL a

freeFL i = FL (returnND (Var i))

6Available at https://hackage.haskell.org/package/tree-monad.
7To be exact, FL is a constrained monad [23, 49] due to a constraint on the
bind operation. Furthermore, FL is only a monad w.r.t. run equality [25], i.e.,
the monad laws hold after applying our later defined monad starter to both
sides of the equations.
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The bind operation, however, is more challenging to de-
fine. Our idea is that pattern matching should lead to the
instantiation of free variables. This approach corresponds to
the concept of narrowing [45] known from functional logic
programming. Since the monadic lifting from Section 2.4
transforms pattern matching into monadic binds, the bind
operation of our functional logic monad has to perform the
instantiation.
To instantiate free variables, we have to be able to enu-

merate all constructors of the corresponding data types. For
this purpose, we introduce the type class Narrowable. Its
only method narrow is supposed to get the next available
identifier from the state of the non-determinism monad (see
Section 3.1) as an argument. Using this identifier, it should
provide a list of all constructors of a data type applied to
freshly generated free variables. Additionally, narrow should
return the number of identifiers used for each constructor,
which corresponds exactly to the constructor’s arity.

class Narrowable a where

narrow :: ID → [ (a, Integer) ]

Instances of the Narrowable class are defined for FL-lifted
data types. As an example, consider the following instance
for the lifted list data type [ ]FL.

instance Narrowable [a]FL where

narrow i = [ ( [ ]FL, 0), (freeFL i :FL freeFL (i + 1), 2) ]

Before we finally define the bind operation of our func-
tional logic monad, we introduce the following auxiliary
function in the non-determinism monad.

instantiateND :: Narrowable a⇒ ID → ND a

instantiateND i = get >>=ND 𝜆(h, j) → case find i h of

Nothing → msumND (map update (narrow j))

where update (x , o) = put (insert i x h, j + o) >>ND

returnND x

Just x → returnND x

This function tries to find a binding for the variable on the
heap. If such a binding exists, which would mean that the
variable has been instantiated before, we return the value
it is bound to. Note that this portion of code implements
call-time choice semantics, i.e., free variables with the same
identifier represent the same value within the same com-
putation branch. If there is no binding on the heap for the
variable, we generate the list of possible constructors for
said variable using narrow . Every element of this list leads
to a new computation branch, in which we put the value
on the heap, increment the next available identifier of the
non-determinism monad’s state accordingly, and return the
value.

Now we have everything at hand to define the bind opera-
tion for the FLmonad. By binding the inner non-deterministic
computation, we can pattern match on its result. In the case
that the value is a free variable, we instantiate it using the

previously introduced auxiliary function instantiateND and
apply the continuation to the instantiated value. Otherwise,
we directly apply the continuation to the value.

(>>=FL) :: Narrowable a⇒ FL a→ (a→ FL b) → FL b

FL nd >>=
FL f = FL $ nd >>=

ND 𝜆case

Var i → instantiateND i >>=ND unFL ◦ f

Val x → unFL (f x)

Due to the transformation of function applications into
calls of appFL (or rather (>>=FL)) during the lifting of func-
tions (see Section 2.4), we have to give a Narrowable instance
for the lifted function type (→FL). Since we are unable to
generate arbitrary functions, we resort to a run-time error in
this case. However, this error is irrelevant in practice because
narrowing of free variables with function types can never
be triggered as we restrict the usage of inverses involving
higher-order types (see Section 7.1).

instance Narrowable (a→FL b) where

narrow = error "cannot narrow functions"

Remember that FL has to be an instance of MonadFail

in order to be a suitable monad for the monadic lifting as
presented in Section 2.3. For the instance definition we fall
back to the instance of the inner non-determinism monad.

failFL :: String → FL a

failFL s = FL (failND s)

We further introduce the following shorthand function to
represent failed computations without error messages.

failedFL :: FL a

failedFL = FL mzeroND

Lastly, we need a monad starter to run a functional logic
computation. The result of a functional logic computation
might contain free variables (or even be a free variable itself),
which is generally undesired after executing a functional
logic computation. After running the monad starter, we ex-
pect values to be effect-free, i.e., the results of a functional
logic computation must not contain any free variables.

To this end, we introduce the Groundable type class. Like
Narrowable, it operates on FL-lifted values. Its single method
groundFL should instantiate any deep occurring free vari-
ables to every possible value and, thus, should compute the
ground normal form of its argument. This invariant will
become relevant, for instance, in Section 4.1.

class Narrowable a⇒ Groundable a where

groundFL :: FL a→ FL a

As an example, we once again have a look at the instance
definition for the lifted list data type [ ]FL. In the instance,
we simply call groundFL recursively on every component.
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instance Groundable a⇒ Groundable [a]FL where

groundFL x = x >>=
FL 𝜆case

[ ]FL → returnFL [ ]FL
y :FL ys→ groundFL y >>=

FL 𝜆y ′→

groundFL ys >>=FL 𝜆ys′→

returnFL (returnFL y ′ :FL return
FL ys′)

The final monad starter for a functional logic computation
looks as follows. It first computes the ground normal form of
its argument, then runs the monad starter for the inner non-
deterministic computation and last strips the Val constructor
of all results using unVal. The latter is safe to do because of
the ground normal form computation beforehand.

evalFL :: Groundable a⇒ FL a→ [a]

evalFL = map unVal ◦ evalND ◦ unFL ◦ groundFL

4 Inverses

In this section, we describe the generation of inverse func-
tions. Our general idea for an inverse function is to interpret
the monadically lifted version of a function using free vari-
ables as the arguments. For the lifting, we use the functional
logic monad from Section 3.2. The evaluation of the lifted
function then leads to the non-deterministic instantiation
of the free variables if the original function performed pat-
tern matching on the corresponding values. Recall from Sec-
tion 2.4 that patternmatching has been transformed into calls
to (>>=FL), which implicitly instantiates free variables and
creates multiple non-deterministic computation branches
in the process. Finally, each non-deterministic result of the
lifted function call is matched with the argument to the in-
verse function. Within each matching computation branch,
the heap will contain bindings for the free variables that
represent the result of the inverse computation.

4.1 Conversion

So far we have introduced a lifted variant for every data type
and function in our program. Our lifted functions operate on
the lifted data types. However, the generated inverse func-
tions should take the original unlifted types as arguments
and return unlifted representations as well. Thus, we need
to convert between regular and lifted representations of data
types for interoperability between the lifted world and the
regular Haskell world.
First, we introduce the following poly-kinded [60] type

family [48] in order to use the lifting of types within Haskell
itself. In fact, the type family Lifted exactly corresponds to
J·Ki

FL
as depicted in Figure 1.

type family Lifted (a :: k) :: k

Furthermore, for every lifted data type or type class T , we
generate a type family instance of the form

type instance Lifted T = TFL,

for which the following instance is an example.

type instance Lifted [ ] = [ ]FL

To fully model the type lifting, we additionally need a type
family instance that represents the lifting of an application
of two type expressions.8

type instance Lifted (f a) = (Lifted f ) (Lifted a)

Next, we define the class Convertible, which performs the
actual conversion between regular and lifted values.

class Convertible a where

to :: a→ Lifted a

from :: Lifted a→ a

Instances of the Convertible type class are quite simple to
define, because they just map every data constructor to their
lifted variant and vice versa. This can be seen in the following
instance for the list data type [ ].

instance Convertible a⇒ Convertible [a] where

to [ ] = [ ]FL

to (x : xs) = toFL x :FL toFL xs

from [ ]FL = [ ]

from (x :FL xs) = fromFL x : fromFL xs

For convenience, we use two helper functions in the in-
stance above that handle the conversion of components of
data constructors, namely toFL and fromFL. The function
toFL converts its unlifted argument using to and then lifts
the result into the FL monad with returnFL.

toFL :: Convertible a⇒ a→ FL (Lifted a)

toFL = returnFL ◦ to

The definition of fromFL, which translates from the lifted
world back to the Haskell world, is a bit more elaborate. We
will see in Section 4.3 that conversion in this direction only
takes place after the monad starter ran. Thus, the argument
to from and fromFL will always be in ground normal form.
Consequently, it is safe to just extract the single value from
the inner non-deterministic computation and to recursively
convert it.

fromFL :: Convertible a⇒ FL (Lifted a) → a

fromFL = from ◦ unVal ◦ head ◦ evalND ◦ unFL

4.2 Matching

We must ensure that the argument of an inverse function
matches the result of the computation of the lifted function.
Our matching procedure consists of two intertwined parts.

The first part is captured by the type classMatchable with
a monadic function match that ensures that the topmost
constructors of its two arguments correspond. The method

8Note that ś although our type lifting is injective ś we cannot declare
the type family Lifted to be injective [54], because the instance for type
applications would otherwise be rejected by the GHC.
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should add bindings to the heap on success or fail other-
wise. Its first argument is unlifted, because it will always be
supplied from the Haskell world as we will see in Section 4.3.

class Matchable a where

match :: a→ Lifted a→ FL ()FL

Instances of this class are easily implemented for any data
type. For every pair of unlifted and lifted constructor we
pair-wise match all their components. If the constructors do
not match, we fail using failedFL from Section 3.2.

instance (Convertible a,Matchable a) ⇒

Matchable [a] where

match [ ] [ ]FL = returnFL ()FL
match (x : xs) (y :FL ys) = matchFL x y >>

FL

matchFL xs ys

match = failedFL

Since the components of a lifted data type are values in
the functional logic monad, the code above uses another
monadic function named matchFL, which constitutes the
second part of our matching. While it also takes an unlifted
value from the Haskell world as the first argument, its sec-
ond argument is a functional logic computation. In order
to efficiently handle the special case that the result of this
computation is a variable, we implement matchFL on the
level of the non-determinism monad (which motivated the
two-layer design of our monad in Section 3.2). We extract
the result of the inner non-deterministic computation using
(>>=ND) and afterwards consider two cases.

1. If the result is an unbound variable, the matching adds
a binding for the variable on the heap and succeeds.

2. For every other case, we continue the matching with
the result value using the previously defined match.

matchFL :: (Convertible a,Matchable a)

⇒ a→ FL (Lifted a) → FL ()FL
matchFL x (FL nd) = FL $ nd >>=

ND 𝜆case

Var i → get >>=ND 𝜆(h, j) → case find i h of

Nothing → put (insert i (to x) h, j) >>ND

returnND (Val ()FL)

Just y → unFL (match x y)

Val y → unFL (match x y)

4.3 Synthesizing Inverse Functions

The last step is to synthesize the definition of a function’s
inverse. With all the building blocks at hand, we only need to
assemble them in the right manner. Since the type signature
will become more clear after seeing the implementation, we
start with the latter.
In the following, we explain the implementation of in-

verse functions by the example of (++)−1 from Section 1. In
the implementation, we call the lifted function (++FL) with
free variables as arguments. We use negative identifiers for

the free variables to rule out clashes with the positive iden-
tifiers that are generated during the instantiation of free
variables (see Section 3.2). The result of the lifted function
call is matched with the input of the inverse function using
matchFL. Every computation branch for which the matching
succeeds results in a heap that contains bindings for free
variables that were demanded during the computation. Note
that unsuccessful matchings fail as fast as possible due to
Haskell’s laziness, because evaluation of the lifted function
is only required up to the first mismatching constructors.
In each remaining computation branch, we return a (lifted)
tuple of the free variables we initially used as the arguments
to the lifted function. The free variables may have been
(partially) instantiated during the computation of the lifted
function and will be fully instantiated by the monad starter
evalFL when it computes the ground normal form. All that
is left is to convert the values in ground normal form back
into their unlifted representation via map and from.

(++)−1 res = map from $ evalFL $

matchFL res ((++FL) ‘app
FL‘ freeFL (−1)

‘appFL‘ freeFL (−2)) >>FL

returnFL ((,)FL (freeFL (−1)) (freeFL (−2)))

Now that we have seen the implementation of the inverse,
we can turn our attention to its type signature. The type
signature of (++)−1 has to accommodate that we need to
match the (unlifted) argument of the inverse function with
the result of our lifted function. Furthermore, the result lists
of the inverse function need to be converted from their lifted
representation back into the Haskell world. And lastly, due
to the use of the monad starter, we demand Groundable for
the lifted lists as well. We end up with the following type
signature, which requires the use of the FlexibleContexts

language extension.

(++)−1 :: (Matchable [a],Convertible [a]

,Groundable (Lifted [a]))

⇒ [a] → [ ([a], [a]) ]

Since every data type9 has instances of both Matchable

and Convertible as well as a Groundable instance on its lifted
variant, we introduce the following constraint synonym us-
ing the ConstraintKinds language extension [40]. We use it
to increase readability of type signaturesÐexcept when a
more granular context is required, e.g., when we consider
partial inverses in Section 6.

type Invertible a =

(Matchable a,Convertible a,Groundable (Lifted a))

Using this constraint synonym along with simplifying the
constraints using the available instances, we can write the
type signature as follows.

(++)−1 :: Invertible a⇒ [a] → [ ([a], [a]) ]

9With the exception of the function type, see Section 7.1.
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5 Functional Patterns

Functional patterns [5, 6] enable arbitrarily deep pattern
matching in data structures by allowing the use of function
symbols in patterns. In this section, we implement func-
tional patterns in Haskell using inverse functions and enrich
Haskell’s pattern matching this way.
Recall the following example from Section 1, where we

use the function (++) in a pattern to specify that the variable
x should correspond to the last element of the input list.

last ( ++ [x ]) = x

In Curry [20], functional patterns conceptually represent a
(potentially infinite) set of rules. In the case of the function
last , the functional pattern is equivalent to the following
infinite number of equations.

last [x ] = x

last [ , x ] = x

last [ , , x ] = x

…

In general, a functional pattern can match in multiple ways.
That is, functional patterns are per se non-deterministic.10 In
order to properly integrate functional patterns with Haskell
where functions are deterministic, we expect them to have
a single or multiple equivalent solutions. We leave it to the
programmer to ensure this property. Without this property,
the semantics of functional patterns in Haskell are not well-
defined, i.e., the solution of a functional pattern could be any
of all non-deterministic solutions.
Assuming that the aforementioned property holds, we

can define a pattern transformation L·MfunPat that expresses
functional patterns in terms of inverse functions and view
patterns [14, 57]. The transformation is given in Figure 4 and
is available as a Template Haskell [31, 52] meta function in
our GHC plugin. Due to the nature of the transformation to
create regular Haskell patterns, functional patterns integrate
well with Haskell’s already existing pattern matching: They
are allowed to occur in place of any pattern and can even
be nested within another. Furthermore, in accordance with
Haskell’s patternmatching semantics, a function’s remaining
rules are tried if a functional pattern does not match. Using
the transformation we can then write the function last as
follows.

last L ++ [x ]MfunPat = x

We now explain how the functional pattern transforma-
tion works by means of the example last , whose final trans-
formed version looks as follows.

last :: Invertible a⇒ [a] → a

last ((𝜆arg → [ res | res@( , [x ]) ← (++)−1 arg ])

→ ( , [x ]) : ) = x

10Although this is not the case for last , because a partially applied (++) is
injective.

In the function of the view pattern, we first call the inverse
(++)−1. The results of this call are then filtered with the list
comprehension

[ res | res@( , [x ]) ← (++)−1 arg ]

so that they match the argument patterns given in the func-
tional pattern. In the view pattern’s pattern

( , [x ]) :

we reuse the argument patterns to bind the functional pat-
tern’s variables accordingly. Here, it is safe to match only
on the first result in the view, because we assume the single-
solution property to hold. Note the additionally imposed
Invertible constraint on the type variable a in the type signa-
ture of last due to the use of (++)−1.

The run time of last as presented is quadratic in the length
of the input list. However, we achieve linear run time if we
omit the evaluation to ground normal form (see Section 3.2)
for functional patterns. We claim that it is safe to do so for
inverses in functional patterns, because ground normal form
computation only makes a difference for inverses where the
result still contains free variables. And since free variables
generally represent multiple values, such inverses would
violate the single-solution property. Therefore, our GHC
plugin incorporates this improvement.

As a side note, we can also use non-right-linear functions
in a functional pattern and, thus, render non-linear pattern
matching in Haskell possible. In the following example, the
functional pattern in the first equation of isSame is equiva-
lent to the non-linear pattern (x , x).

dup :: a→ (a, a)

dup x = (x , x)

isSame :: Invertible a⇒ (a, a) → Bool

isSame Ldup xMfunPat = True

isSame = False

6 Partial Inverses

We can generalize our approach of function inversion to
support partial inverses [47] as well. Partial inverses allow
fixing known arguments of the original function, which is
often useful. It is possible to fix a single argument, multiple
arguments or none at all. Fixing no arguments corresponds
to the inverses as presented in Section 4. We denote the set
of indices of fixed arguments (starting at 1) as a subscript to
the inverse function.
As an example, we consider the function lookup. Taking

a key as well as a list of key-value pairs, it yields the first
corresponding value if the key is present in the list.

lookup :: Eq a⇒ a→ [ (a, b) ] → Maybe b

lookup [ ] = Nothing

lookup k ((k ′, v) : kvs) | k == k ′ = Just v

| otherwise = lookup k kvs
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Lf p1 … pnM
funPat

≔ (𝜆y1 → [y2 | y2@(p1, … , pn) ← f −1 y1 ]) → (p1, … , pn) : (Functional pattern)

Figure 4. Transformation of functional patterns (y1 and y2 are fresh variables)

Conceptually, its inverse function lookup−1 enumerates all
tuples of keys and lists of key-value pairs with the following
conditions: If the input is a Just value, for each result tuple
the list of key-value pairs has to contain at least one entry
for the key. Otherwise, if the input is Nothing, the result
keys must not be present in the corresponding result lists.
However, such an inverse function is of little use in practice.

lookup−1 :: (Eq a, Lifted (Eq a), Invertible a, Invertible b)

⇒ Maybe b→ [ (a, [ (a, b) ]) ]

In contrast, a partial inverse that fixes the second argu-
ment11, namely the key-value list, is much more convenient
and resembles a łreverse lookupž. Instead of returning a
list of key-value pairs it now expects such a list as another
input in addition to the Maybe value. We generate the par-
tial inverse similarly to the regular inverse, but provide the
fixed argument to the lifted function (converted using toFL

from Section 4.1). Note that we require neither ground nor-
mal form computation nor matching for the fixed argument,
which is why a Convertible constraint is sufficient for it.

lookup−1{2} :: (Eq a, Lifted (Eq a),Convertible [ (a, b) ]

, Invertible (Maybe b), Invertible [a])

⇒ [ (a, b) ] → Maybe b→ [a]

lookup−1{2} arg2 res = map from $ evalFL $

matchFL res (lookupFL ‘appFL‘ freeFL (−1)

‘appFL‘ toFL arg2) >>FL

freeFL (−1)

Analog to Section 4.3, the type signature can be simplified
using the available type class instances.

lookup−1{2} :: (Eq a, Lifted (Eq a), Invertible a, Invertible b)

⇒ [ (a, b) ] → Maybe b→ [a]

To conclude this section, we demonstrate the usefulness
of the partial inverse lookup−1{2} with the following use cases.
The first one is to get all keys in a given key-value list that
map to a certain value.

ghci> lookup−1{2} [ (0, True), (2, True) ] (Just True)

[2, 0]

ghci> lookup−1{2} [ (0, True), (2, True) ] (Just False)

[ ]

The second use case of interest is to retrieve all keys that are
not present in a key-value list.

ghci> take 5 (lookup−1{2} [ (0, True), (2, True) ] Nothing)

[1,−1,−2, 3,−3]

11We denote the set of indices of fixed argument as a subscript.

7 Extensions

Many other approaches to function inversion are limited to
work only in a first-order setting or do not cover the support
of primitive types. In this section, we extend our framework
with respect to both these aspects.

7.1 Higher-Order Functions

Up to this point, higher-order functions are only supported
to a limited extent. (Partially) inverted functions may use
higher-order functions, but must not be higher-order func-
tions themselves. That is, inverted functions must not have
higher-order arguments or return values. This restriction is
ensured at type-level by the lack of instances able to satisfy
Invertible constraints for the function type.

As an example, we consider the well-knownmap function,
whose inverse has the following type (without simplifying
the constraints using the available instances).

map−1 :: (Invertible (a→ b), Invertible [a], Invertible [b])

⇒ [b] → [ (a→ b, [a]) ]

While the definition ofmap−1 is synthesized and type checks,
the function cannot actually be used due to the unsatisfiable
Invertible (a → b) constraint. Providing the missing in-
stances could be considered problematic, because we would
need to be able to narrow and match functions. This restric-
tion is also present in some functional logic programming
languages, where free variables and unification for function
types are prohibited [19].

However, if we consider the partial inverse map−1
{1}

, where

we fix the function argument, we only need a Convertible

instance for the function type according to Section 6.

map−1
{1}

:: (Convertible (a→ b)

, Invertible [a], Invertible [b])

⇒ (a→ b) → [b] → [ [a] ]

In order to provide this unproblematic instance, we first
extend the lifted function type with a constructor for func-
tions from the Haskell world. We define the extended lifted
function type as a generalized algebraic data type (GADT)
[42]. Note that the additional constructor for functions from
the Haskell world implicitly uses existential quantification
[29, 41] as well as type equality constraints [48].

data (→FL) a b where

FuncFL :: (FL a→ FL b) → (a→FL b)

HaskellFunc :: (Groundable (Lifted c)

, Convertible c,Convertible d)

⇒ (c → d) → (Lifted c →FL Lifted d)
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With the extended data type for lifted functions at hand, we
can give the instance of Convertible for this type.

instance (Groundable (Lifted a),Convertible a

,Convertible b) ⇒ Convertible (a→ b) where

to f = f ‘seq‘ HaskellFunc f

from (HaskellFunc f ) = unsafeCoerce f

To convert a former Haskell function to the Haskell world
again, we just extract the function from the constructor and
coerce12 it to the correct type. It is safe to define from par-
tially, because functions cannot appear in the result of an
inverse function due to Invertible constraints being unsatis-
fiable for function types.

Finally, we need to adapt our helper function for monadic
function application appFL from Section 2.4. When we apply
a Haskell function to a lifted value, we first compute the
ground normal form of the lifted value before converting
and passing it to the function. We accept that, by computing
the ground normal form, the application of a Haskell function
to a lifted value might be more strict than the author of the
function intended.

appFL :: FL (a→FL b) → FL a→ FL b

mf ‘appFL‘ x = mf >>=FL 𝜆case

FuncFL f → f x

HaskellFunc f → groundFL x >>=
FL toFL′ ◦ f ◦ from

To account for the fact that partiality of Haskell functions
should lead to failed computations instead of run-time er-
rors in the lifted setting (see Section 2.3), we use a modified
version of the function toFL from Section 4.1 that checks
whether its input is partially defined. Testing for partiality
is done with isBottom from a library13 by Danielsson and
Jansson [11].

toFL′ :: Convertible a⇒ a→ FL (Lifted a)

toFL′ x = if isBottom x then failedFL else returnFL (to x)

7.2 Primitive Types

We have shown how algebraic data types are lifted and nar-
rowed for our functional logic computations. However, nu-
merical primitive types like Int are not actually constructor-
based and, thus, our approach is not directly suitable for
them. In this section, we outline a constraint-based exten-
sion of our functional logic monad to efficiently support
primitive typesÐa topic often neglected in other works. We
implemented this extension for our plugin, but omit the
implementation details due to a lack of space.
The problematic aspect of primitive data types is best

shown in the context of pattern matching. As an example,
consider the following function that performs pattern match-
ing on its argument of type Int .

12Using unsafeCoerce in this context is always safe, because we know that
our Lifted type family is injective as mentioned in Footnote 8.
13Available at https://hackage.haskell.org/package/ChasingBottoms.

isZero :: Int → Bool

isZero 0 = True

isZero = False

In the monadically lifted variant, this pattern matching leads
to the instantiation of any free variable provided for the argu-
ment. Instantiating a free variable of type Int would require
narrowing all 18 quintillion14 values for a 64-bit integer and
would in turn result in equally many computation branches,
which is not remotely feasible in practice.

In order to be more efficient, we introduce constraints
whenever pattern matching on a free variable of primitive
type occurs. These constraints capture the notion that such a
pattern match can either succeed or fail, which corresponds
to the variable being equal or unequal to the value matched
against. Pattern matching on a free variable of primitive type
then only results in two new computation branches instead
of the immediate instantiation of the variable. We add an
equality constraint in the computation branch where the
pattern matching succeeds, whereas we add an inequality
constraint in the other branch. This approach is similar to the
notion of negative information for patternmatch compilation
in ML [51] and Haskell [17].
To implement this idea we extend the state of our non-

determinism monad from Section 3.1 with a data structure
that stores (in-)equality constraints on free variables. We
check the consistency of the stored constraints every time
we add further constraints. Whenever the constraint store
becomes inconsistent at one point of evaluation, we can im-
mediately abandon the corresponding computation branchÐ
potentially without instantiation of an involved free variable
at all. We take the constraints stored for a free variable into
account to limit the values actually being narrowed when
instantiation becomes necessary.
The approach of adding constraints for better support of

primitive types is transferable to other primitive types like
Char , Word , etc. If we use finite domain constraints [24],
we could even efficiently implement primitive operations
like (+) and (∗). However, our plugin only uses equality
constraints at the moment.

8 Related Work

We identify mainly three fields of related work, which we dis-
cuss in the following: the embedding of logic computations
in Haskell, other approaches to automatic (partial) inversion,
and pattern matching extensions.

8.1 Logic Computations in Haskell

Braßel et al. [8] design a compiler for Curry that targets
Haskell. The language is implemented bymeans of a transfor-
mation thatÐsimilar to our approachÐhas to explicitly model

14264 = 18,446,744,073,709,551,616 to be exact.
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the sharing of non-determinism. Various authors [9, 18] later
propose constraint-based extensions of the implementation.

A library for functional logic computations in Haskell by
Fischer et al. [15] truly models call-by-need via explicit shar-
ing of monadic computations. They use a state monad with
a heap that stores computations instead of values. However,
they lack an explicit representation of free variables, which
is crucial for our inversion framework. We could integrate
their approach to model call-by-need into our effect monad,
but at the cost of making the overall framework more com-
plex. For example, higher-kinded polymorphic type variables
would require the use of theQuantifiedConstraints language
extension [22].
Naylor et al. [38] also implement a library for functional

logic programming in Haskell. However, they do not support
data types with non-deterministic components, which makes
their solution not applicable to our setting.
Claessen and Ljunglöf [10] present a library for typed

logical variables in Haskell based on an embedding of Prolog
[50], but their embedding is strict and, therefore, not suitable
for our inversion.

8.2 Automatic Inversion

For this section, we focus on automatic inversion in func-
tional languages, where a lot of work has been done already.
In contrast to most other publications, we generally support
higher-order functions and seem to be the only ones who
address primitive types in the context of inversion.
Romanenko [47] considers the first-order functional pro-

gramming language Refal. In the process of adding inversion
to the language, he ends up with a functional logic extension
of Refal, called Refal-R.While his approach has similarities to
ours, namely using free variables and narrowing, it is aimed
at a strict source and target language that is considerably
different from Haskell’s semantics and the strongly typed
approach considered here.
Abramov and Glück [2] present the Universal Resolving

Algorithm (URA) for inverse interpretation in a first-order
functional programming language restricted to tail-recursion.
Abramov et al. [3] later extend the original URA to general
recursion and improve efficiency as well as termination by
reducing the search space using lazy evaluation. In our ap-
proach, we achieve a similar search space reduction due to
Haskell’s laziness.

Focusing only on injective functions, where efficient and
deterministic inverses are known to exist, Glück and Kawabe
[16] present an approach to automatically derive the inverse
of first-order functions. They use methods of LR parsing to
eliminate non-determinism resulting from their automatic
program inversion, which can be done because of their focus
on injectivity.
The language Sparcl by Matsuda and Wang [34] aims to

incorporate inversion into the language by design. Their

approach is similar to reversible languages, but their combi-
nation of both invertible and non-invertible computations
in one program makes their language less restrictive and
allows a seamless integration.
Nishida et al. [39] propose a partial-inversion compiler

of constructor term rewriting systems that first generates a
conditional term rewriting system and then unravels it to an
unconditional system. Their approach is like ours based on
narrowing, but only covers strict programming languages.
Almendros-Jiménez and Vidal [4] describe another par-

tial inversion techniqueÐagain for first-order functional
programsÐthat is specialized on inductively sequential term
rewriting systems. In the same paper, they also sketch exten-
sions of their approach to higher-order and laziness, some-
thing our approach also supports.

8.3 Pattern Matching Extensions

Antoy and Hanus [5] introduce functional patterns to Curry,
which are implemented using a functional pattern unifica-

tion operator that is similar to our matching function from
Section 4.2. The connection between functional patterns and
function inversion has also been noted by Braßel and Chris-
tiansen [7].
With a similar motivation as functional patterns, context

patterns as introduced by Mohnen [36] support the defini-
tion of functions based on matching subterms at an arbitrary
depth. However, they have different semantics from func-
tional patterns and the syntax is less intuitive.
Egi and Nishiwaki [13] present Egison, a language with

non-linear pattern matching. With a library named Sweet

Egison15, Egi et al. [12] offer an embedding of Egison within
Haskell. Functional patterns also allow for non-linear pattern
matching (see Section 5), a connection we want to further
explore in the future.
On a different note, pattern synonyms by Pickering et al.

[44] allow for a more convenient notation of complex pat-
terns. In contrast to functional patterns, however, functions
still cannot be used in patterns (apart from łhidingž them
in view patterns). Nevertheless, pattern synonyms integrate
nicely with our implementation of functional patterns, be-
cause the latter are transformed into regular Haskell patterns.

9 Conclusion

In this paper, we have presented an approach to automatic
function inversion in Haskell that covers both inversion and
partial inversion using an extension with non-determinism
and free variables. Based on inverse functions, we have also
shown an implementation of functional patternsÐa pattern
matching extension previously not available in Haskell. As a
proof of concept, we provide our approach as a GHC plugin.

In the future, we plan to prove correctness as well as com-
pleteness properties for our automatic function inversion.

15Available at https://github.com/egison/sweet-egison.
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We furthermore aim to incorporate finite-domain constraints
for better support of operations on primitive types in our
plugin. Last but not least, we want to examine the imple-
mentation of non-linear pattern matching on the basis of
functional patterns in more detail.
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