
Embedding Functional Logic Programming
in Haskell via a Compiler Plugin

Kai-Oliver Prott1[0000−0002−5795−6308], Finn Teegen1[0000−0002−7905−3804], and
Jan Christiansen2[0000−0003−4911−8459]

1 Kiel University, Kiel, Germany {kpr,fte}@uni-kiel.de
2 Flensburg University of Applied Sciences, Flensburg, Germany

jan.christiansen@hs-flensburg.de

Abstract. We present a technique to embed a functional logic language
in Haskell using a GHC plugin. Our approach is based on a monadic
lifting that models the functional logic semantics explicitly. Using a GHC
plugin, we get many language extensions that GHC provides for free in
the embedded language. As a result, we obtain a seamless embedding of
a functional logic language, without having to implement a full compiler.
We briefly show that our approach can be used to embed other domain-
specific languages as well. Furthermore, we can use such a plugin to build
a full blown compiler for our language.

Keywords: functional programming · logic programming · DSL · Haskell
· GHC plugin · monadic transformation

1 Introduction

Writing a compiler for a programming language is an elaborate task. For example,
we have to write a parser, name resolution, and a type checker. In contrast,
embedding a domain-specific language (DSL) within an already existing host
language is much easier. If the host language is a functional programming language,
such an embedding often comes with the downside of monadic overhead. To get
the best of both worlds, we use a compiler plugin to embed a domain-specific
language that does not require the user to write their code in a monadic syntax.
Concretely, we implement a plugin for the Glasgow Haskell Compiler (GHC) that
allows for a seamless embedding of functional logic programming in Haskell.3 An
additional benefit of our approach is that our embedded language supports a lot
of Haskell’s language extensions without additional effort.

Our lazy functional logic language is loosely based on the programming
language Curry [19, 2]. However, instead of Curry’s syntax, we have to restrict
ourselves to Haskell’s syntax. This is because at the moment4 a GHC plugin
cannot alter the static syntax accepted by GHC. Moreover, overlapping patterns
in our language use Haskell’s semantics of choosing the first rule instead of
3 Available at https://github.com/cau-placc/ghc-language-plugin
4 We plan to change this; see GHC issue 22401 [30].

2 Prott, K., Teegen, F., Christiansen, J.

introducing non-determinism as Curry does. In return we save a significant
amount of work with our approach compared to implementing a full compiler for
Curry. One of the compilers for the Curry programming language, the KiCS2
[7], translates Curry into Haskell. While the KiCS2 has around 120,000 lines
of Haskell code, by using a GHC plugin we get the most basic functionality
with approximately 7,500 lines of code. We have to be careful with these figures
because we do not provide the same feature set. For example, KiCS2 provides free
variables and unification whereas our plugin instead provides multi-parameter
type classes. However, by adapting the underlying implementation, we could
provide the remaining features of KiCS2 as well. Besides reducing the amount of
code, when using a plugin we do not have to implement features that are already
implemented in GHC from scratch. As examples, it took two master’s theses to
add multi-parameter type (constructor) classes to the KiCS2 [34, 25] while we
get them for free.

The following example demonstrates the basic features of our approach using
the Curry-like language. It enumerates permutations, the “hello world” example
of the Curry programming language community. Here and in the following we
label code blocks as follows: Source for code that is written in the embedded
language, Target for corresponding Haskell code, which is generated by our
plugin, and Plugin for code that is provided by us as part of our plugin.

Source{-# OPTIONS GHC -fplugin Plugin.CurryPlugin #-}
module Example where
insert :: a → [a]→ [a]
insert e [] = [e]
insert e (y : ys) = (e : y : ys) ? (y : insert e ys)
permutations :: [a]→ [a]
permutations [] = []
permutations (x : xs) = insert x (permutations xs)

The first line activates our plugin. The function insert uses the (?) operator for
introducing non-determinism to insert a given element at an arbitrary position in
a list. That is, insert either adds e to the front of the list or puts y in front of the
result of the recursive call. Building upon this, permutations non-deterministically
computes a permutation of its input list by inserting the head of the list anywhere
into a permutation of the remaining list.

Having the ability to write functional logic code in direct-style, i.e., without
explicit monadic abstractions, is a great advantage. The code in direct-style
is more concise as well as more readable, and makes it easy to compose non-
deterministic and deterministic functions. To enable writing code in direct-
style, our plugin transforms the code from direct-style to an explicit monadic
representation behind the scenes. This transformation is type-safe and therefore
allows for a seamless embedding of a functional logic language within Haskell.

To use the non-deterministic permutations operation in a Haskell program,
we need to capture the non-determinism and convert the function to work on
ordinary lists.

Embedding Functional Logic Programming in Haskell via a Compiler Plugin 3

ghci> eval1 permutations [1, 2, 3]
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]

Here, eval1 is essentially a wrapper that converts the 1-ary function permutations
into a Haskell function that returns a list of all results and without non-
determinism nested in data structures.5 The result is a list of all permutations of
the given input list.

We present the following contributions.

– We show how a GHC plugin can be used to embed a functional logic language
in Haskell. By embedding the language via a plugin (Section 2, Section 3),
we obtain the ability to write functional logic definitions, and can use the
code written in the embedded language in Haskell.

– Besides saving the implementation of a parser and a type checker, we get
additional language features like type classes, do-notation, bang patterns and
functional dependencies for the functional logic language for free (Section 4).

– Although we demonstrate the embedding of a functional logic language in
this paper, we argue that our approach can be generalized to languages other
domain-specific languages as well (Section 5).

2 From Direct-Style to Explicit Monadic Style

Recall from Section 1 the implementation of a permutations functions in direct-
style. Since Haskell does not natively support non-determinism, we need a way
to represent our embedded programs in Haskell. To do this, we transform direct-
style code to its explicit monadic counterpart. In this section, we will show the
transformation rules from direct-style to monadic style.

2.1 A Lazy Functional-Logic Monad

Before we go into detail with the transformation, we need to introduce our
functional logic language and its monadic implementation.

As seen before, our language provides non-deterministic branching. Since
Haskell uses call-by-need evaluation, we want our language to be non-strict as
well. In the context of functional logic programming, we also have to decide
between using call-time choice or run-time choice [22]. Consider the function
double x = x +x applied to 1?2. With run-time choice, we would get the results 2,
3, and 4. The choice for the non-deterministic value in the argument of double is
made independently for each ocurrence of x . However, obtaining the odd number
3 as a result of double is unintuitive. With call-time choice the choice for x is
shared between all ocurrences. Thus, call-time choice only produces the result 2
and 4. For our language we settled for call-time choice since it is more intuitive
in many cases [2].
5 Using Template Haskell, we also provide an arity-independent wrapper function

where one can specify a search strategy as well.

4 Prott, K., Teegen, F., Christiansen, J.

To model a functional logic language with call-by-need semantics and call-time
choice, we use a technique presented by Fischer et al.[16]. In their paper, Fischer
et al. use an operator share to turn a monadic computation into a computation
that is evaluated at most once and is, thus, lazy. The share operator is part of
the type class MonadShare that is defined as follows.6

Pluginclass Monad m ⇒ MonadShare m where
share :: Shareable m a ⇒ m a → m (m a)

class Shareable m a where
shareArgs :: a → m a

Intuitively, share registers its argument as a thunk in some kind of state and
returns a new computation as a replacement for the shared expression. Whenever
the returned computation is executed, it looks up if a value has been computed
for the thunk. If this is the case, the said value is returned. Otherwise, the thunk
is executed and the result value is saved for the future.

The additional type class Shareable needs to be defined for all monadically
transformed data types. The class method shareArgs applies share recursively
to the components of the transformed data types. Because data constructors
can contain non-deterministic operations in their arguments, constructors take
computations as arguments as well. This approach is well-known from modeling
the non-strictness of Haskell in an actually pure programming language like Agda
[1]. The usefulness of interleaving data types with computational effects has also
been observed in more general settings [3].

Our lazy non-determinism monad ND is implemented using techniques from
Fischer et al.[16]. The implementation provides the following two operations to
introduce non-deterministic choices and failures by using the Alternative instance
of our monad.

Source(?) :: a → a → a
failed :: a

We omit the full implementation from the paper, because one could use any
monadic implementation for a lazy functional logic language. In the future, we
want to use the implementation from [20] for our language. However, the focus
of this work is the embedding of the language, not the encoding of it.

2.2 The Transformation

Now we will show our transformation rules to compile direct-style to monadic
style. In the context of a GHC plugin, we have used a similar transformation of
Haskell code [35] to generate inverses of Haskell functions. A notable difference
is that we include the modification with share to model call-by-need instead of
just call-by-name.

We will use the ND type constructor in our transformation, although it works
with any monadic type constructor that provides an implementation of share.
6 The version presented in [16] has a more general type.

Embedding Functional Logic Programming in Haskell via a Compiler Plugin 5

To increase readability of monadically transformed function types, we will use
the following type.

Pluginnewtype a →ND b = Func (ND a → ND b)

2.3 Types

Our transformation on types replaces all type constructors with their non-
deterministic counterparts. By replacing the type constructor → with →ND, the
result and arguments of each functions are effectively wrapped in ND as well.
Any quantifiers and constraints of a transformed type remain at the beginning of
the type signature to avoid impredicativity. Additionally, we also wrap the outer
type of a function in ND to allow an operation to introduce non-determinism
before applying any arguments. In order to keep the original definitions of types
available for interfacing the plugin with Haskell (Section 3.5), it is necessary to
rename (type) constructors. This way we avoid name clashes by altering names of
identifiers. Figure 1 presents the transformation of types, including the renaming
of type constructors. An example for our transformation on types is given below.7

J∀α1 . . . αn.ϕ⇒ τKt := ∀α1 . . . αn.JϕKt ⇒ ND JτKi (Polymorphic type)

J〈κ1 τ1, . . . , κn τn〉Kt := 〈rename(κ1) Jτ1Ki, . . . , rename(κn) JτnKi〉 (Context)

Jτ1 → τ2Ki := Jτ1Ki →ND Jτ2Ki (Function type)

Jτ1 τ2Ki := Jτ1Ki Jτ2Ki (Type application)

JχKi := rename(χ) (Type constructor)

JαKi := α (Type variable)

Figure 1: Type lifting J·Kt

Sourcedouble :: Int → Int Targetdouble :: ND (Int →ND Int)

2.4 Data Type Declarations

To model non-strictness of data constructors, we need to modify most data type
definitions and lift every constructor. As the (partial or full) application of a
constructor can never introduce any non-determinism by itself, we neither have
to transform the result type of the constructor nor wrap the function arrow. This
allows us to only transform the parameters of constructors, because they are
7 The transformed version of Int is called Int as well.

6 Prott, K., Teegen, F., Christiansen, J.

the only potential sources of non-determinism in a data type (Figure 2). The
following code shows how a language plugin transforms the list data type. To
improve readability we use regular algebraic data type syntax for the list type
and its constructors.

J data D α1 . . . αn = C1 | . . . | CnKd := data rename(D) α1 . . . αn

= JC1Kc | . . . | JCnKc (Data type)
JC τ1 . . . τnKc := rename(C) Jτ1Kt . . . JτnKt (Constructor)

Figure 2: Data type lifting J·Kd

Sourcedata List a = Nil | Cons a (List a)
Targetdata ListND a = NilND | ConsND (ND a) (ND (ListND a))

2.5 Functions

The type of a transformed function serves as a guide for the transformation
of functions and expressions. We derive three rules for our transformation of
expressions from the one of types:

1. Each function arrow is wrapped in ND . Therefore, function definitions are
replaced by constants that use multiple unary lambda expressions to introduce
the arguments of the original function. All lambda expressions are wrapped
in a return because function arrows are wrapped in a ND type.

2. We have to extract a value from the monad using (>>=) before we can pattern
match on it. As an implication, we cannot pattern match directly on the
argument of a lambda or use nested pattern matching, as arguments of a
lambda and nested values are potentially non-deterministic and have to be
extracted using (>>=) again.

3. Before applying a function to an argument, we first have to extract the
function from the monad using (>>=). As each function arrow is wrapped
separately, we extract each parameter of the original function.

Implementing this kind of transformation in one pass over a complex Haskell
program is challenging. Thus, we simplify each program first. As the most
difficulties arise from pattern matching, we perform pattern match compilation
to get rid of complex and nested patterns. In contrast to the transformation
done by GHC, we want a Haskell AST instead of Core code as output. Thus, we
cannot re-use GHC’s existing implementation and use a custom transformation
that is similar to the one presented in [39]. Note that we still preserve any non-
exhaustiveness warnings and similar for pattern matching by applying GHC’s

Embedding Functional Logic Programming in Haskell via a Compiler Plugin 7

pattern match checker before our transformation. For the remainder of this
subsection we assume that our program is already desugared, that is, all pattern
matching is performed with non-nested patterns in case expressions.

JvK := v (Variable)
Jλx → eK := return (Func (λy → alias(y , x , JeK))) (Abstraction)

Je1 e2K := Je1K>>= (λ(Func f)→ f Je2K) (Application)
JC K := return (Func (λy1 → . . .

return (Func (λyn → . . .

return (rename(C) y1 . . . yn))))) (Constructor)

J case e of {br1; . . . ; brn}K := JeK>>= (λy → case y of {Jbr1Kb; . . . ; JbrnKb})
(Case Expression)

JC x1 . . . xn → eKb := rename(C) y1 . . . yn →
alias(y1, x1, . . . alias(yn, xn, JeK)) (Case Branch)

alias(vnew, vold, e) :=

share vnew >>= λvold → e if vold occurs at
least twice in e

let vold = vnew in e otherwise (Aliasing)

Figure 3: Expression lifting J·K (y and y1 to yn are fresh variables)

Figure 3 presents the rules of our transformation. Note that any bindings
introduced by a lambda or case expression are shared using the alias rule. We
have omitted rules for let declarations, since recursive bindings are a bit tricky to
get right. They are supported by our implementation as long as the monadic type
has a sensible MonadFix instance. This is the case for our simple implementation.

To give an example of our whole lifting, the permutations example from the
introduction with minor simplifications looks as follows.

Target
insertND :: ND (a →ND ListND a →ND ListND a)
insertND = return (Func (λarg1 → share arg1 >>= λe →

return (Func (λarg2 → share arg2 >>= λxs → xs >>= λcase
NilND → return (ConsND e (return NilND))
ConsND y ys → return (ConsND e (return (ConsND y ys))) <|>

return (ConsND y (insertND >>= λ(Func f1)→ f1 e
>>= λ(Func f2)→ f2 ys))))))

permutationsND :: ND (ListND a →ND ListND a)
permutationsND = return (Func (λarg → share arg >>= λarg ′ → arg ′ >>= λcase

NilND → return NilND
ConsND x xs → insertND >>= λ(Func f1)→ f1 x >>= λ(Func f2)→

f2 (permutationsND >>= λ(Func f3)→ f3 xs)))

8 Prott, K., Teegen, F., Christiansen, J.

The transformation made the code significantly more complex, where most of
the complexity arises from the modeling of laziness. This also emphasizes that
writing code in direct-style is more readable for lazy fuctional logic programming.

3 Plugin Core

In this section, we motivate the use of a plugin and discuss its core. In particular
we present how the transformation to monadic code is achieved.

3.1 Why a GHC Plugin?

The GHC allows extending its functionality using a compiler plugin API. Using
this API, we can change the behavior of the type check and analyze or transform
code at various intermediate stages.

There are some alternatives to using a plugin, for example, metaprogramming
via Template Haskell [32]. One crucial point is that our transformation (e.g. in
Section 3.4) requires type information that is not present when using Template
Haskell. Even with typed Template Haskell, we do not get all type annotations
that we need for the transformation. Additionally, we aim to provide good quality
error messages produced by GHC itself (Section 3.3), for which we have no
idea how to properly achieve this with a transformation using (typed) Template
Haskell. We could do the transformation on the level of GHC’s intermediate
language Core, which would eliminate the need for our own pattern match
transformation and reduce the amount of syntax constructs we have to take into
account. But a short evaluation showed that some aspects of the transformation
are harder to achieve on core level, for example, generating additional instances,
modifying data types, and adding additional type constraints to functions.

3.2 Plugin Phases

The plugin consists of three sub-plugins, each having a different purpose and
using a different extension point of GHC’s plugin API as shown in Figure 4. The
“Import Check” and the “Import Constraint Solver” are both concerned with
the correct handling of imports. The former checks that each imported module
has been compiled with the same language plugin, while the latter resolves all
type mismatches that arise from the transformation (Section 3.3). At last, the
main work is done in the “Transformation” phase, which is again divided into
four sub-phases:

1. Transforming data types to model non-strictness of data constructors. Type
classes are also transformed in this sub-phase (not shown in this paper).

2. Compiling and simplifying pattern matching to make the implementation of
sub-phase 4 simpler.

3. Deriving instances of internal type classes for all data types, because our trans-
formation requires each data type to have certain instances (like Shareable
to model sharing of non-deterministic computations).

Embedding Functional Logic Programming in Haskell via a Compiler Plugin 9

4. Transforming function definitions to achieve our desired semantics. Here we
use the rules shown in Section 2.2

Renamer Import
Check

Type
Checker Transformation

Constraint
Solver

Import
Constraint

Solver

Desugar

GHC phases

Plugin phases

Figure 4: Extension points used by our plugin

3.3 Handling of Imported Definitions

We consider the following constant where double is imported from a different
module.

Sourceexample :: Int
example = double (23 :: Int)

If the definition was not imported from a module that has already been compiled
by the plugin, it will not be compatible with the current module. Therefore
we check that each module only imports plugin-compiled modules and abort
compilation with an error message otherwise. A programmer can explicitly
mark a non-plugin module as safe to be imported, but its the programmers
obligation to ensure that all functions in that module have plugin-compatible
types. Let us assume the import of double passes the “Import Check”. Before our
transformation takes place, GHC type checks the whole module. The definition
of example will cause a type error, because the non-determinism is explicit in the
transformed variant double :: ND (Int →ND Int) that has already been compiled
by the plugin. In fact, any imported function (and data type) has a lifted type
and, thus, using such a function will be rejected by GHC’s type check. However,
the transformed version of example will later be type correct and we thus want
to accept the definition.

To overcome this issue we use a constraint solver plugin. When GHC type
checks example, it realizes that double should have type Int → Int from looking
at the argument 23 :: Int and the result type of example. However, double was
imported and its type is known to be ND (Int →ND Int). The type checker will
now create an equality constraint8

ND (Int →ND Int) ∼ (Int → Int)

8 The operator (∼) denotes homogeneous (both kinds are the same) equality of types.

10 Prott, K., Teegen, F., Christiansen, J.

and sends it to GHC’s constraint solver to (dis-)prove. Naturally, GHC cannot
make any progress proving this equality and instead forwards it to our constraint
solver plugin. There we un-transform the type, that is, we remove the outer
ND and un-transform the transformed function arrow (→ND) to obtain our new
left-hand side for the equality constraint:

(Int → Int) ∼ (Int → Int).

We pass this new constraint back to GHC, where it might be solved to show that
the untransformed program is well-typed. That is, we consider a type τ1 and its
non-deterministic variant τ2 to be equal by using the following equation.

ND τ2 ∼ τ1

This approach is similar to the “type consistency” relation in gradual typing [33].
For details about GHC’s constraint solver, we refer the interested reader to [36].

Besides making transformed and untransformed types compatible the con-
straint solver plugin also needs to automatically solve any constraints that
mention the Shareable type class. GHC cannot always discharge these constraints
before our main transformation has taken place.

Type Errors Our plugin ensures that ill-typed programs are not accepted and
returns a meaningful type error. Consider the following ill-typed program.

SourcetypeError :: Int
typeError = double True

Using our plugin, GHC generates the following type error as if double actually
had the untransformed type.

– Couldn’t match expected type Int with actual type Bool
– In the first argument of double, namely True

In the expression: double True
In an equation for typeError : typeError = double True

In fact, any error messages produced by GHC for modules with our plugin
activated are (mostly) the same as if the user would have written the identical
code in “vanilla” Haskell. There are only a few deliberate exceptions where we
augment certain errors or warnings with more information. We achieve these
error messages by transforming the code after the type check and by deliberately
un-transforming the types of imported functions.

3.4 Sharing Polymorphic Expressions

We have already introduced the share operator at the beginning of the section.
For call-by-need evaluation, this operator is implemented as presented in [16]
and requires a type class constraint Shareable (m :: Type → Type) (a :: Type).
The constraint enforces that values of type a can be shared in the monad m.

Embedding Functional Logic Programming in Haskell via a Compiler Plugin 11

Instances of this type class are automatically derived by the plugin for every
user-defined data type via generic deriving [26].

Ensuring that all types in a type signature are Shareable is easy to achieve
if the type signature is monomorphic or only contains type variables with the
simple kind Type. For variables with other kinds, e.g., f :: Type → Type, we
cannot add a constraint for that variable as Shareable m f is ill-kinded. So, what
can one do if Haskell’s type and class system is not powerful enough? Just enable
even more language extensions!9 In our case, we can solve the problem by using
the extension QuantifiedConstraints [6]. What we really want to demand for f
in the example above is that, for every type x that is Shareable, the type f x
should be Shareable as well. We can express exactly this requirement by using a
∀ quantifier in our constraint. This is demonstrated by the following example.

Sourcevoid :: Functor f ⇒ f a → f ()

Targetvoid :: (Functor f ,Shareable ND a
, ∀x .Shareable ND x ⇒ Shareable ND (f x))
⇒ ND (f a →ND f ())

We can extend this scheme to even more complex kinds, as long as it only consists
of the kind of ordinary Haskell values (Type) and the arrow kind constructor
(→). Language extensions that allow the usage of other kinds are not supported
at the moment. To add Shareable constraints in types, we replace the first rule
in Figure 1 by the rules in Figure 5.

J∀α1 . . . αn.ϕ⇒ τKt := ∀α1 . . . αn.(JϕKt ∪ 〈Jα1Ks, . . . , JαnKs〉)⇒ JτKt

(Polymorphic type)
Jv :: (κ1 → . . .→ κn)Ks := ∀(β1 :: κ1) . . . (βn−1 :: κn−1).〈Jβ1Ks, . . . , Jβn−1Ks〉

⇒ Shareable ND (v β1 . . . βn−1)
(Type variable of kind κ1 → . . .→ κn)

Jv :: TypeKs := Shareable ND v (Type variable of kind Type)

Figure 5: Type lifting J·Kt with Shareable constraints (∪ joins two contexts,
β1 . . . βn−1 are fresh variables)

3.5 Interfacing with Haskell

At the end of the day, we want to call the functions written in our embedded
language from within Haskell and extract the non-deterministic results in some
kind of data structure. Because data types are transformed to support non-strict
9 Use this advice at your own risk.

12 Prott, K., Teegen, F., Christiansen, J.

data constructors, we do not only have to encapsulate non-determinism at the
top-level of a result type, but effects that are nested inside of data structures
as well. To trigger all non-determinism inside a data structure, we convert data
types to some kind of normal form, where only top-level non-determinism is
possible. We also translate data types defined in our embedded language into
their original counterparts. This way, we can embed our new language within
Haskell as a DSL.

Consider the following example with a list of n non-deterministic coins that
are either False or True.

Sourcecoin :: Bool
coin = False ? True
manyCoins :: Int → [Bool]
manyCoins n = [coin | ← [1 . .n]]

The transformed type will be ND (Int →ND ListND BoolND). To use the result
of manyCoins in plain Haskell, it is convenient to convert the list with non-
deterministic components into an ordinary Haskell list. Therefore, we move any
non-determinism occurring in the elements of the list to the outermost level.

The conversion to normal form is automatically derived for all data types by
generating instances of the type class NormalForm.10

Pluginclass NormalForm a b where
nf :: a → ND b
embed :: b → a

Here, the type variable a will be a transformed type, while b will be the cor-
responding original definition. The function nf converts a value with nested
non-determinism into its normal form. To convert a data type to normal form,
we convert the arguments to normal form and chain the values together with
(>>=). The result of nf contains non-determinism only at the outermost level and
the data type is transformed back to its original definition.

We also support conversion in the other direction. The function embed converts
an untransformed data type to its transformed representation by recursively
embedding all constructor arguments. Note that this type class is not required
for the monadic transformation itself, but for the interface between Haskell and
our embedded language.

For the list data type and its non-deterministic variant ListND from Section 2.4,
we define the NormalForm instance as follows.

Targetinstance NormalForm a b ⇒ NormalForm (ListND a) (List b) where
nf NilND = return Nil
nf (ConsND x xs) = liftM2 Cons (x >>= nf) (xs >>= nf)
embed Nil = NilND
embed (Cons x xs) = ConsND (return (embed x)) (return (embed xs))

10 It is similar to the type class Convertible from [16]

Embedding Functional Logic Programming in Haskell via a Compiler Plugin 13

3.6 Compatibility

The plugin makes heavy use of GHC’s internal APIs and is thus only compatible
with a specific GHC version. Development started with GHC 8.10, but some of
the experiments we conducted with higher-rank types required us to enable the
“Quick Look” approach for impredicative types [31] introduced in GHC 9.2. The
difficulty of upgrading the plugin to support a new GHC version depends on the
complexity of GHC’s internal changes, but even the upgrade from 8.10 to 9.2 did
not take long although there were significant changes to GHC under the hood.

Also note that new GHC language features are not supported automatically,
even if we upgrade the plugin to the new GHC version. For example, consider
Linear Haskell as introduced in GHC 9.0. With this version, GHC’s internal
representation for function types changed to accommodate linearity information.
When we upgraded the plugin past this major version, we had to adapt to
the new representation. However, without careful considerations during the
transformation, the linearity information is lost or not accurately reflected in the
final code. Thus, without explicitly treating the linearity information correctly
(what that means exactly is still left to determine), the plugin does not support
Linear Haskell properly. But when linear types are not used, the transformation
succeeds for the new GHC version.

4 Inherited Features

In this section we discuss GHC features that our plugin supports for the cor-
responding embedded language as well. Some of these features are supported
out-of-the-box, that is, just by using a GHC plugin to implement a language. A
few type-level and type class extensions are among these features, for instance.
Other features required us to make small adaptions to the plugin, for example,
to add additional cases to the transformation.

To demonstrate the benefits of our approach, we revisit the example from
Section 1. We consider a variant that uses a multi-parameter type class with a
functional dependency [24] to abstract from list-like data structures and view
patterns [37, 14] to define a generalized version of permutations . We cannot write
this program using any of the available Curry compilers as none of them support
the required language features. That is, using a plugin we can not only implement
a non-deterministic language in 7,500 lines of code, we also get features for free
that no other full-blown Curry compiler with more than 120,000 lines of code
supports.

Sourceclass ListLike l e | l → e where
nil :: l
cons :: e → l → l
uncons :: l → Maybe (e, l)

permutations :: ListLike l e ⇒ l → l
permutations (uncons → Nothing) = nil
permutations (uncons → Just (x , xs)) = ins x (permutations xs)

14 Prott, K., Teegen, F., Christiansen, J.

where ins e (uncons → Nothing) = cons e nil
ins e (uncons → Just (x , xs)) = cons e (cons x xs) ? cons x (ins e xs)

Ad-hoc polymorphism via type classes is one of Haskell’s most useful features
for writing concise programs. Properly supporting type classes as well as exten-
sions surrounding them like multi-parameter type classes, functional dependencies
and flexible contexts is straightforward. We can just rely on GHC for solving type
class constraints and for implementing type classes via dictionary transformation
[23, 38]. Apart from minor technical differences, we can handle functions from a
type class instance like any other function during our monadic transformation.
As type classes are a complex feature, we were kind of surprised that a lot of
Haskell’s type class extensions are easy to support.

Most language extensions required little to no additional lines of code to be
supported by our plugin. Some of them are among the most commonly used
extensions on Hackage [10, 9]. From the 30 most used extensions, 19 are currently
supported by our plugin. Figure 6 lists a selection of these extensions and their
respective rank in the list of most commonly used GHC extensions. The extensions
in the column labeled “Supported out-of-the-box” are orthogonal to the plugin
transformation and are supported without any additional effort. The column
labeled “Small adaptions” in Figure 6 lists extensions that are supported after
minor changes. Most of these extensions add syntactic sugar that is simple enough
to transform.

Figure 6: Some extensions with their rank in most commonly used GHC extensions

Supported out-of-the-box Small adaptions

2. FlexibleInstances 5. MultiParamTypeClasses 1. OverloadedStrings
3. FlexibleContexts 13. RecordWildCards 15. LambdaCase
4. ScopedTypeVariables 14. TypeOperators 20. TupleSections

Unsupported Features and Limits Although our plugin can handle many language
extensions, some of GHC’s more feature-rich and expressive extensions remain
unsupported. We can group the problems for each extension into three categories:

1. The extension enriches GHC’s type system. Since our transformation works
on the typed syntax tree, our transformation would have to consider more
complex type expressions, which is challenging on a technical level to get
right. This is the case for, e.g., type families and higher-rank types. For
higher-rank types, one of the problems is that they lead to impredicativity in
combination with our transformation.

2. The extension allows the definition of more flexible data types. Our plugin
has to derive instances of some type classes (e.g., Section 3.5) automatically,
which gets more challenging for complex data types as well. Examples for
such an extension are existential data types.

Embedding Functional Logic Programming in Haskell via a Compiler Plugin 15

3. The extension introduces a lot of syntactical sugar that requires a great
deal of work to support. One prominent example for this category is the
extension RebindableSyntax , which just introduces a lot of corner cases to
consider during our monadic transformation. However, there is no reason for
extensions in this category to be hard or impossible to support.

5 Embedding Other Languages

To show the applicability of our approach for different languages, we have
embedded additional languages using a plugin: a strict functional language, a
probabilistic language, and a language with dynamic information flow control.
For brevity, we do not include these in the paper but provide them on GitHub.11
All these additional languages must use Haskell’s syntax too. However, we are
working on lifting that restriction by extending the GHC plugin API with the
required capabilities. Note that all plugins are built upon a generalized variant of
the plugin we presented in this paper. Implementing the monads that model the
effects of these languages is as simple or as complex as implementing a monad in
Haskell – with the same type of errors and warnings, for example. Apart from the
concrete effect implementation, almost all of our plugin code is shared between
the three examples. The implementations of these languages are approximately
400 lines of code each.

Note that the additional languages do not use call-by-need as their evalua-
tion strategy. This is not a problem, however, as we generalized our monadic
transformation to model call-by-value and call-by-name semantics as well. These
languages also need different implementations for the share operator. Details on
implementing share for different evaluation strategies can be found in [27].

A major goal for future research is to embed even more languages. We plan to
enlarge the class of languages that can be embedded using our plugin. Currently,
we can use all languages whose semantics can be modeled using a standard monad
that are not parametrized over an additional parameter. For example, at the
moment we cannot use our plugin to model a language with algebraic effects on
the basis of a free monad. We also plan to investigate the generalization to more
different forms of monads like graded or indexed monads.

6 Related Work

There are three different groups of related work.

6.1 GHC Plugins

The first group of related work uses GHC plugins. The GHC plugin infrastructure
has been used to extend Haskell with different kinds of features. Using constraint
solver plugins, Gundry [18] adds support for units of measure and Diatchki
11 See README file in the linked repository from Footnote 3.

16 Prott, K., Teegen, F., Christiansen, J.

[12] adds type-level functions on natural numbers. Di Napoli et al. [11] use a
combination of plugins to extend Haskell with liquid types and Breitner [8] uses
a combination of Template Haskell and a Core plugin to provide inspection
testing. We also use a combination of plugins, we use a constraint solver plugin
to recover from type errors and a source plugin [29] that uses the renamer and
the type checker extension point for the transformation. However, none of the
other plugins transform the compiled code to such an extent as our plugin since
they do not aim for a thorough transformation. The only plugin that is similar is
one that compiles GHC Core code to abstractions from category theory [13]. The
approach is suitable for the definition of DSLs, but only supports monomorphic
functions and values. In contrast, our plugin aims to model a full functional
programming language with implicit effects.

6.2 Monadic Intermediate Languages

Our transformation basically models the denotational semantics of a language
explicitly. Peyton Jones et al. [28] have applied a similar approach to model
Haskell and ML in a single monadic intermediate language. However, although
the underlying idea bears some resemblance, the contributions of our work are
different. While existing work focuses on common intermediate languages, we
use Haskell and GHC for more than just the compiler backend.

Transforming an impure functional language language into monadic code has
been applied to model Haskell in various proof assistants. For example, a Core
plugin for GHC is used by [1] to generate Agda code that captures Haskell’s
semantics via an explicit monadic effect.

6.3 Embedding Languages

Last but not least in the Scheme and Racket family of programming languages
users can define new languages by using advanced macro systems [17]. For
example, there exists a lazy variant of PLT Scheme for teaching [4] and an
implementation of miniKanren, a logic programming language [21]. Felleisen et al.
[15] even aim for language-oriented programming that facilitates the creation of
DSLs, the development in these languages and the integration of multiple of these
languages. We do not aim for language-oriented programming but to simplify
writing and embedding research languages within a different ecosystem, namely
the GHC with its statically typed, purely functional programming language. We
target all those research prototype languages that could as well be implemented
as a monadic variant of Haskell without the syntactic monadic overhead.

7 Conclusion

In this paper, we have shown how to embed a functional logic language into
Haskell. Using a compiler plugin allows us to use direct-style syntax for the
embedded language while retaining good quality error messages. In the future,

Embedding Functional Logic Programming in Haskell via a Compiler Plugin 17

we want to extend the approach as mentioned in Section 5 and add support for
more of GHC’s language extensions. For example, we plan to investigate the
support of more current features like linear types [5] as well as extensions like
higher-rank types.

Acknowledgements We thank our anonymous reviewers and Michael Hanus
for their helpful comments and fruitful discussions

Bibliography

[1] Abel, A., Benke, M., Bove, A., Hughes, J., Norell, U.: Verifying Haskell
programs using constructive type theory. In: Proceedings of the 2005 ACM
SIGPLAN Workshop on Haskell. pp. 62–73. ACM Press, New York, NY,
USA (2005). https://doi.org/10.1145/1088348.1088355

[2] Antoy, S., Hanus, M.: Functional logic programming. Communications of
the ACM 53(4), 74 (2010). https://doi.org/10.1145/1721654.1721675

[3] Atkey, R., Johann, P.: Interleaving data and effects. Journal of Functional
Programming 25 (2015). https://doi.org/10.1017/S0956796815000209

[4] Barzilay, E., Clements, J.: Laziness without all the hard work: Combining
lazy and strict languages for teaching. In: Proceedings of the 2005 Workshop
on Functional and Declaritive Programming in Education - FDPE ’05. p. 9.
ACM Press, Tallinn, Estonia (2005). https://doi.org/10.1145/1085114.
1085118

[5] Bernardy, J.P., Boespflug, M., Newton, R.R., Jones, S.P., Spiwack, A.:
Linear Haskell: Practical linearity in a higher-order polymorphic language.
Proceedings of the ACM on Programming Languages 2(POPL), 1–29 (Jan
2018). https://doi.org/10.1145/3158093

[6] Bottu, G.J., Karachalias, G., Schrijvers, T., Oliveira, B.C.d.S., Wadler, P.:
Quantified class constraints. In: Proceedings of the 10th ACM SIGPLAN
International Symposium on Haskell. pp. 148–161. Haskell 2017, Association
for Computing Machinery, New York, NY, USA (2017). https://doi.org/
10.1145/3122955.3122967

[7] Braßel, B., Hanus, M., Peemöller, B., Reck, F.: KiCS2: A new compiler from
Curry to Haskell. In: International Workshop on Functional and Constraint
Logic Programming. pp. 1–18. Springer Berlin Heidelberg (2011). https:
//doi.org/10.1007/978-3-642-22531-4 1

[8] Breitner, J.: A promise checked is a promise kept: Inspection testing. In:
Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell.
pp. 14–25. Haskell 2018, Association for Computing Machinery, New York,
NY, USA (2018). https://doi.org/10.1145/3242744.3242748

[9] Breitner, J.: GHC Extensions stats (Nov 2020), https://gist.github.co
m/nomeata/3d1a75f8ab8980f944fc8c845d6fb9a9

[10] Breitner, J.: [ghc-steering-committee] Prelimary GHC extensions stats (Nov
2020), https://mail.haskell.org/pipermail/ghc-steering-committe
e/2020-November/001876.html

[11] Di Napoli, A., Jhala, R., Löh, A., Vazou, N.: Liquid Haskell as a GHC Plugin -
Haskell implementors workshop 2020 (Aug 2020), https://icfp20.sigplan
.org/details/hiw-2020-papers/1/Liquid-Haskell-as-a-GHC-Plugin

[12] Diatchki, I.S.: Improving Haskell types with SMT. In: Proceedings of the 2015
ACM SIGPLAN Symposium on Haskell. pp. 1–10. Haskell ’15, Association
for Computing Machinery, New York, NY, USA (2015). https://doi.org/
10.1145/2804302.2804307

https://doi.org/10.1145/1088348.1088355
https://doi.org/10.1145/1088348.1088355
https://doi.org/10.1145/1721654.1721675
https://doi.org/10.1145/1721654.1721675
https://doi.org/10.1017/S0956796815000209
https://doi.org/10.1017/S0956796815000209
https://doi.org/10.1145/1085114.1085118
https://doi.org/10.1145/1085114.1085118
https://doi.org/10.1145/1085114.1085118
https://doi.org/10.1145/1085114.1085118
https://doi.org/10.1145/3158093
https://doi.org/10.1145/3158093
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1145/3122955.3122967
https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1007/978-3-642-22531-4_1
https://doi.org/10.1145/3242744.3242748
https://doi.org/10.1145/3242744.3242748
https://gist.github.com/nomeata/3d1a75f8ab8980f944fc8c845d6fb9a9
https://gist.github.com/nomeata/3d1a75f8ab8980f944fc8c845d6fb9a9
https://mail.haskell.org/pipermail/ghc-steering-committee/2020-November/001876.html
https://mail.haskell.org/pipermail/ghc-steering-committee/2020-November/001876.html
https://icfp20.sigplan.org/details/hiw-2020-papers/1/Liquid-Haskell-as-a-GHC-Plugin
https://icfp20.sigplan.org/details/hiw-2020-papers/1/Liquid-Haskell-as-a-GHC-Plugin
https://doi.org/10.1145/2804302.2804307
https://doi.org/10.1145/2804302.2804307
https://doi.org/10.1145/2804302.2804307
https://doi.org/10.1145/2804302.2804307

Embedding Functional Logic Programming in Haskell via a Compiler Plugin 19

[13] Elliott, C.: Compiling to categories. Proceedings of the ACM on Program-
ming Languages 1(ICFP) (Aug 2017). https://doi.org/10.1145/3110271,
https://doi.org/10.1145/3110271

[14] Erwig, M., Peyton Jones, S.: Pattern guards and transformational patterns.
Electronic Notes in Theoretical Computer Science 41(1), 3 (2001). https:
//doi.org/10.1016/S1571-0661(05)80540-7

[15] Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S., Barzilay, E.,
McCarthy, J., Tobin-Hochstadt, S.: A programmable programming language.
Communications of the ACM 61(3), 62–71 (Feb 2018). https://doi.org/
10.1145/3127323

[16] Fischer, S., Kiselyov, O., Shan, C.C.: Purely functional lazy nondeterministic
programming. Journal of Functional Programming 21(4-5), 413–465 (Sep
2011). https://doi.org/10.1017/S0956796811000189

[17] Flatt, M.: Composable and compilable macros: You want it when? In:
Proceedings of the Seventh ACM SIGPLAN International Conference on
Functional Programming. pp. 72–83. ICFP ’02, Association for Computing
Machinery, New York, NY, USA (2002). https://doi.org/10.1145/5814
78.581486

[18] Gundry, A.: A typechecker plugin for units of measure: Domain-specific con-
straint solving in GHC Haskell. In: Proceedings of the 2015 ACM SIGPLAN
Symposium on Haskell. pp. 11–22. Haskell ’15, Association for Computing
Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2804
302.2804305

[19] Hanus, M., Kuchen, H., Moreno-Navarro, J.: Curry: A Truly Functional
Logic Language. In: Proc. ILPS’95 Workshop on Visions for the Future of
Logic Programming. pp. 95–107 (Aug 1995)

[20] Hanus, M., Prott, K.O., Teegen, F.: A monadic implementation of functional
logic programs. In: Proceedings of the 24th International Symposium on
Principles and Practice of Declarative Programming. PPDP ’22, Association
for Computing Machinery, New York, NY, USA (2022). https://doi.org/
10.1145/3551357.3551370

[21] Hemann, J., Friedman, D.P., Byrd, W.E., Might, M.: A small embedding of
logic programming with a simple complete search. In: Proceedings of the
12th Symposium on Dynamic Languages. pp. 96–107. DLS 2016, Association
for Computing Machinery, New York, NY, USA (2016). https://doi.org/
10.1145/2989225.2989230

[22] Hussmann, H.: Nondeterministic algebraic specifications and nonconfluent
term rewriting. Journal of Logic Programming 12, 237–255 (1992). https:
//doi.org/10.1016/0743-1066(92)90026-Y

[23] Jones, M.P.: A system of constructor classes: Overloading and implicit
higher-order polymorphism. In: Proceedings of the Conference on Functional
Programming Languages and Computer Architecture - FPCA ’93. pp. 52–61.
ACM Press, Copenhagen, Denmark (1993). https://doi.org/10.1145/16
5180.165190

https://doi.org/10.1145/3110271
https://doi.org/10.1145/3110271
https://doi.org/10.1145/3110271
https://doi.org/10.1016/S1571-0661(05)80540-7
https://doi.org/10.1016/S1571-0661(05)80540-7
https://doi.org/10.1016/S1571-0661(05)80540-7
https://doi.org/10.1016/S1571-0661(05)80540-7
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
https://doi.org/10.1145/3127323
https://doi.org/10.1017/S0956796811000189
https://doi.org/10.1017/S0956796811000189
https://doi.org/10.1145/581478.581486
https://doi.org/10.1145/581478.581486
https://doi.org/10.1145/581478.581486
https://doi.org/10.1145/581478.581486
https://doi.org/10.1145/2804302.2804305
https://doi.org/10.1145/2804302.2804305
https://doi.org/10.1145/2804302.2804305
https://doi.org/10.1145/2804302.2804305
https://doi.org/10.1145/3551357.3551370
https://doi.org/10.1145/3551357.3551370
https://doi.org/10.1145/3551357.3551370
https://doi.org/10.1145/3551357.3551370
https://doi.org/10.1145/2989225.2989230
https://doi.org/10.1145/2989225.2989230
https://doi.org/10.1145/2989225.2989230
https://doi.org/10.1145/2989225.2989230
https://doi.org/10.1016/0743-1066(92)90026-Y
https://doi.org/10.1016/0743-1066(92)90026-Y
https://doi.org/10.1016/0743-1066(92)90026-Y
https://doi.org/10.1016/0743-1066(92)90026-Y
https://doi.org/10.1145/165180.165190
https://doi.org/10.1145/165180.165190
https://doi.org/10.1145/165180.165190
https://doi.org/10.1145/165180.165190

20 Prott, K., Teegen, F., Christiansen, J.

[24] Jones, M.P.: Type Classes with Functional Dependencies. In: Programming
Languages and Systems. vol. 1782, pp. 230–244. Springer Berlin Heidelberg,
Berlin, Heidelberg (2000). https://doi.org/10.1007/3-540-46425-5 15

[25] Krüger, L.E.: Extending Curry with multi parameter type classes (in german).
Master’s Thesis, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
(2021), https://www.informatik.uni-kiel.de/~mh/lehre/abschlussa
rbeiten/msc/Krueger Leif Erik.pdf

[26] Magalhães, J.P., Dijkstra, A., Jeuring, J., Löh, A.: A generic deriving mech-
anism for Haskell. In: Proceedings of the Third ACM Haskell Symposium on
Haskell. pp. 37–48. Haskell ’10, Association for Computing Machinery, New
York, NY, USA (2010). https://doi.org/10.1145/1863523.1863529

[27] Petricek, T.: Evaluation strategies for monadic computations. In: Proceedings
of Mathematically Structured Functional Programming. vol. 76, pp. 68–89
(Feb 2012). https://doi.org/10.4204/EPTCS.76.7

[28] Peyton Jones, S., Shields, M., Launchbury, J., Tolmach, A.: Bridging the gulf:
A common intermediate language for ML and Haskell. In: Proceedings of the
25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 49–61. POPL ’98, Association for Computing Machinery,
New York, NY, USA (1998). https://doi.org/10.1145/268946.268951

[29] Pickering, M., Wu, N., Németh, B.: Working with source plugins. In:
Proceedings of the 12th ACM SIGPLAN International Symposium on
Haskell - Haskell 2019. pp. 85–97. ACM Press, Berlin, Germany (2019).
https://doi.org/10.1145/3331545.3342599

[30] Prott, K.O.: Plugin-swappable parser (Nov 2022), https://gitlab.haske
ll.org/ghc/ghc/-/issues/22401

[31] Serrano, A., Hage, J., Peyton Jones, S., Vytiniotis, D.: A quick look at im-
predicativity. Proceedings of the ACM on Programming Languages 4(ICFP),
1–29 (Aug 2020). https://doi.org/10.1145/3408971

[32] Sheard, T., Jones, S.P.: Template Meta-Programming for Haskell. In: Pro-
ceedings of the 2002 ACM SIGPLAN Workshop on Haskell. pp. 1–16. Haskell
2002, Association for Computing Machinery, New York, NY, USA (2002).
https://doi.org/10.1145/581690.581691

[33] Siek, J., Taha, W.: Gradual typing for functional languages. In: Proceedings
of the 2006 Scheme and Functional Programming Workshop. pp. 81–92
(2006)

[34] Teegen, F.: Extending Curry with type classes and type constructor classes
(in german). Master’s Thesis, Christian-Albrechts-Universität zu Kiel, Kiel,
Germany (2016), https://www.informatik.uni-kiel.de/~mh/lehre/ab
schlussarbeiten/msc/Teegen.pdf

[35] Teegen, F., Prott, K.O., Bunkenburg, N.: Haskell−1: Automatic func-
tion inversion in Haskell. In: Proceedings of the 14th ACM SIGPLAN
International Symposium on Haskell. pp. 41–55. Haskell 2021, Associ-
ation for Computing Machinery, New York, NY, USA (2021). https:
//doi.org/10.1145/3471874.3472982

https://doi.org/10.1007/3-540-46425-5_15
https://doi.org/10.1007/3-540-46425-5_15
https://www.informatik.uni-kiel.de/~mh/lehre/abschlussarbeiten/msc/Krueger_Leif_Erik.pdf
https://www.informatik.uni-kiel.de/~mh/lehre/abschlussarbeiten/msc/Krueger_Leif_Erik.pdf
https://doi.org/10.1145/1863523.1863529
https://doi.org/10.1145/1863523.1863529
https://doi.org/10.4204/EPTCS.76.7
https://doi.org/10.4204/EPTCS.76.7
https://doi.org/10.1145/268946.268951
https://doi.org/10.1145/268946.268951
https://doi.org/10.1145/3331545.3342599
https://doi.org/10.1145/3331545.3342599
https://gitlab.haskell.org/ghc/ghc/-/issues/22401
https://gitlab.haskell.org/ghc/ghc/-/issues/22401
https://doi.org/10.1145/3408971
https://doi.org/10.1145/3408971
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
https://www.informatik.uni-kiel.de/~mh/lehre/abschlussarbeiten/msc/Teegen.pdf
https://www.informatik.uni-kiel.de/~mh/lehre/abschlussarbeiten/msc/Teegen.pdf
https://doi.org/10.1145/3471874.3472982
https://doi.org/10.1145/3471874.3472982
https://doi.org/10.1145/3471874.3472982
https://doi.org/10.1145/3471874.3472982

Embedding Functional Logic Programming in Haskell via a Compiler Plugin 21

[36] Vytiniotis, D., Jones, S.P., Schrijvers, T., Sulzmann, M.: OutsideIn(X) Modu-
lar type inference with local assumptions. Journal of Functional Programming
21(4-5), 333–412 (2011). https://doi.org/10.1017/S0956796811000098

[37] Wadler, P.: Views: A way for pattern matching to cohabit with data abstrac-
tion. In: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages - POPL ’87. pp. 307–313. ACM Press,
Munich, West Germany (1987). https://doi.org/10.1145/41625.41653

[38] Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In:
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages - POPL ’89. pp. 60–76. ACM Press, Austin,
Texas, United States (1989). https://doi.org/10.1145/75277.75283

[39] Wadler, P.: Efficient Compilation of Pattern-Matching. In: Jones, S.L.P. (ed.)
The Implementation of Functional Programming Languages, pp. 78–103.
Prentice-Hall (1987). https://doi.org/10.1016/0141-9331(87)90510-2

https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1017/S0956796811000098
https://doi.org/10.1145/41625.41653
https://doi.org/10.1145/41625.41653
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.1016/0141-9331(87)90510-2
https://doi.org/10.1016/0141-9331(87)90510-2

	Embedding Functional Logic Programming in Haskell via a Compiler Plugin

